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1 Introduction

This report evaluates the GTAP models being used by the California Air
Resources Board (CARB) to calculate the total carbon effects of biofuel use.
It focuses primarily on the quality of the empirical inputs to the model but
also considers the important relationship between “carbon accounting” and
reduced food consumption.

The GTAP model, a “Computable General Equilibrium” (CGE) model,
is a particular version of a long-used method for predicting policy outcomes.
The advantages of CGE models include an ability to model a relatively rich
array of outcomes in a manner that is consistent with economic theory. The
model produces outcomes that are consistent with assumed resource con-
straints, consumer preferences and production possibilities.

A problem with the GTAP model (and with complex CGE models gen-
erally) is that they require the researcher to input a large list of parameters
that define the equations of the model. The more detailed are the results
desired by policy-makers, the more empirical parameters that must be input.
Different parameters will give very different results and, as usual, the princi-
ple of “garbage in, garbage out” applies here. If the input parameters do not
reflect the real world, then neither will the policy predictions of the model.
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In an ideal world, empirical economics research would provide GTAP
modelers with convincing estimates of the needed parameters. Unfortunately,
the empirical literature on many of the necessary parameters is weak or
even non-existent. Worse, though, the GTAP results provided to CARB
sometimes rely on a misleading reading of the empirical literature that does
exist. These problems with empirical inputs call into question the GTAP
results provided to CARB.

The most obvious first-order issue regarding empirical inputs concerns
estimates of the yield price elasticity. The current GTAP runs make use of
yield elasticity estimates that are very difficult to justify on the basis of the
existing scientific literature. Indeed, they appear to be based on an a priori
belief that yield elasticities should be set to a fairly high level (relative to
other elasticties) regardless of the actual findings of the empirical literature.

A review of the literature, together with a simple econometric examina-
tion of data on US corn, supports a yield-price elasticity estimate no higher
than approximately 0.1. This is much lower than the 0.25 elasticity used in
the current GTAP / CARB runs. Government policy should not be made on
the basis of elasticity estimates that are contradicted by most of the exist-
ing empirical literature. The GTAP results can easily and quickly be re-run
using yield elasticity estimates that are supported by the empirical literature.

A second issue with the GTAP / CARB results is that the GTAP model
is asked to provide “carbon accounting” without regard to a number of po-
tentially important non-carbon related issues. The most important of these
issues is the diversion of human food to energy production. In many CGE
model runs, including GTAP runs, a large portion of crops used in biofuels
are predicted to be crops diverted from human consumption.

There is perhaps little cause to worry about the effects of “diverted”
food on the population of the developed world. To the degree that there is
a high food-based demand elasticity for bio-fuel crops, it must be coming
largely from poor countries (although there is likely also an effect via the
production and consumption of meat.) The diversion of food from the world’s
poorest families raises an important social welfare question. Is it proper to
treat reduced human food consumption (and the associated decline in carbon
“emitted” by human breath and so forth) as a pure social gain? The GTAP
models are being asked by CARB to focus only on “carbon accounting,”
but an appropriate social accounting would take steps to recognize effects on
food-poor consumers in the third world.

In addition to issues of yield elasticity and the social cost of reduced food
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consumption, there are important questions about GTAP land-use elastici-
ties, about the economic (vs. biological) yield potential of new land, about
the lack of “unmanaged forest” in the GTAP land model, about the out-of-
date GTAP “Armington” trade model and about the empirical source for
consumption elasticities. Similarly, there are legitimate questions about the
role of the “CET” (and other) functional forms used in the GTAP analysis.
These are all worthy of considerable further study. However, “quick fixes”
do not appear to be available for these problems and so they should likely
be treated as questions for on-going evaluation.

It is important to note that both of the major issues discussed – incorrect
yield price elasticities and ignoring the social cost of increased food prices –
bias downwards the current GTAP / CARB estimates of the indirect land
use cost of biofuels. Correcting these problems would increase the estimated
carbon cost of biofuels. Several of the other problems discussed (such as the
lack of an economic model of land use) point in the same direction, while
some other problems that are discussed (e.g. Armington elasticities) do not
have an obvious direction of bias. Overall, this raises a concern that the
current GTAP estimates understate, perhaps substantially, the indirect land
use cost of biofuels.

2 Economics of Bio-fuel Carbon Policy

Possible carbon gains from bio-fuel use come from some combination of in-
creased production of crops and/or reduced human consumption of crops.1

The increased production of crops can result from increased land-use (acreage
used for agricultural production) and/or increased yields (output per acre.)
As noted in Searchinger et al (2008) and other works, the final tally of the
carbon accounting depends critically on the mix of sources (demand, yield,
land) for the bio-fuel crops

Note that all of these effects are price-mediated (“indirect”) via the world
market for food and fuels. To judge them, we have no choice but to consider
“supply and demand” models of world food markets in equilibrium. In the
present case, the GTAP model is providing the supply and demand frame-
work. In addition to the underlying logic of economic equilibrium, model
results will be driven by [i] pure modeling choices (i.e. the assumed func-

1See Searchinger (2010).
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tional forms for various relationships) and by [ii] various assumed measures
of the price responsiveness (“price elasticities”) of food demand and supply.

A simple biofuel mandate raises the demand for bio-fuel crops.2 In the
simple undergraduate “supply and demand” framework, the mandate there-
fore raises the price of relevant crops. Important lessons of basic microeco-
nomics are that

• price goes up more as demand and supply are (each) less price elastic
and

• how much of the mandate is provided by more supply vs. less demand
is determined by the relative price elasticities of demand and supply,
with the relatively more elastic side accounting for more of the crops
used for bio-fuels.

On the supply side, the overall elasticity of supply is the sum of the price-
elasticity of land-use and the price-elasticity of yield. From this, we know
that

• the degree to which any supply increase is provided by increased land-
use versus increased yield is determined by the relative price-elasticities
of farm-land and yield.

An important lesson from economics, then, is that the predicted mix of
sources depends critically on the relative elasticities. A high yield price-
elasticity mixed with a much higher land-use price-elasticity will imply a
large incremental use of land, whereas the same yield-elasticity mixed with
a low land-use elasticity will imply relatively little incremental land-use.

The simplest carbon-accounting supply and demand model for biofuels
therefore requires at least three separate elasticities for demand, land and
yield. For example, Roberts and Schlenker (2009) and Roberts and Schlenker
(2010) attempt to provide credible empirical estimates of supply and demand
elasticities in the world market for “food commodity calories.” Roberts and
Schlenker (2010) finds a supply elasticity ranging from 0.08 to 0.13 and a de-
mand elasticity ranging from -0.05 to -0.08. Roughly speaking, then, about
one-third of the response to a price increase would come from demand, with
the rest coming from supply. Roberts and Schlenker (2010) argue that the

2The proposed CARB policy is much more complicated than this and will interact in
complicated ways with other national and international policies.
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empirical evidence is not at all consistent with yields that respond greatly
to price at the country level (see the discussion below.) Therefore, their pre-
dicted supply response comes entirely from land-use change (although pre-
dicted world-aggregate yield does change with changes in the cross-country
composition of agricultural land use.)

The GTAP approach is much more theoretically sophisticated in that
it separately models more crops and crop-locations while also considering
intermediate inputs and the explicit effects of international trade. If done
correctly, this would allow much more precise economic and carbon account-
ing. However, there is an important question as to where all of the necessary
elasticities come from. Unfortunately, in many cases the GTAP elasticities
are not justified by economic research and therefore the apparent increased
detail considered by the GTAP model may come at the cost of unrealistic
predictions.

2.1 How to Learn About Elasticities from Market Data

One of the central insights of 20th century econometrics is how to estimate
market primitives (like supply and demand) from market-generated data.
The literature realizes that price can be high either because demand is high or
because supply is low. Quantities and prices are determined “simultaneously”
in equilibrium and it is not proper to think of one as “causing” the other.

Similarly, agricultural land-use in some regions or time-period can be high
because land is very productive or because there is simply a high demand
for agricultural products. Yields may be high because of good weather, or
because high expected prices have induced farmers to use more fertilizer. All
of the relevant observed outcomes – output, yield, land, price – are simulta-
neously determined in market equilibrium.

The econometric literature makes clear that in order to estimate demand,
we need an observed variable that shifts supply, but not demand. Further,
this supply shifter cannot be correlated with the unobserved determinants
of demand. That is, it cannot be correlated with the demand “shock” in
each period. Such a supply shifter is an example of an “instrumental vari-
able” or “natural experiment” that moves supply and statistically “traces
out” demand.3 The proper instrument has to be both exogenous (not deter-

3For an relatively informal discussion, see Angrist and Krueger (2001). For a formal
discussion, see any standard econometrics textbook.
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mined within the system and plausibly uncorrelated with unobserved demand
shocks) and excluded from the demand relationship itself.

The classic supply shifting instrumental variable, dating back to the very
first application of instrumental variables regression in Wright (1928), is
weather, often proxied by yield. Weather is assumed not to effect the demand
curve and is quite clearly exogenously determined. Indeed, this is the same
supply shifter used in Roberts and Schlenker (2010).4

On the other side of the market, to estimate supply we need an observed
variable that shifts demand, but not supply (and that is not systematically
correlated with the unobserved “supply shock” in each period / region.) In
agricultural economics, it has apparently been harder to think of an appro-
priate demand shifter to trace out supply. Roberts and Schlenker (2010)
make use of past weather shocks, which create changes in current inventories
and therefore change demand for current production (since current demand
can also be met from inventories.) This is a clever argument and seems to
work well.

Ignoring the instrumental variables (IV) literature and making use of
simple correlation (or “least squares” or “linear regression”) techniques leads
to incorrect and misleading estimates. Unfortunately, the GTAP model (and
CGE literature more generally) is filled with examples of elasticities that are
estimated via simple (and incorrect) least squares techniques.

To understand the potential problem, suppose that we use least squares
to “fit” quantities to prices. Is the resulting fitted line a “demand curve”
or a “supply curve”? Prices in the data are typically responding to a mix
of supply and demand effects, so the least squares results are typically a
confused mess of demand and supply effects, neither supply nor demand.
(See Working (1927).) Similarly, least-squares estimates of yield “fit” to
price via least-squares do not reveal the yield price-elasticity.

These problems were first discovered in the context of empirical agricul-
tural studies nearly a century ago (Wright (1915)), leading directly to the
creation of the instrumental variables (IV) techniques that can solve them. It
is most unfortunate, and potentially quite misleading, when the GTAP mod-
els rely on incorrect least-squares results instead of on correctly estimated
IV results.

4The use of yield as a proxy for weather is not as obviously correct if yield itself
responses to prices. Roberts and Schlenker address this primarily by testing whether yield
appears to move with prices (and rejecting the relationship) and by doing a robustness
check what makes use of a limited amount of direct data on weather.
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Any serious empirical work on the question of estimating production re-
lationships has to begin with the question of how to deal with the problem
of simultaneously determined demand and production choices. We need to
know: what is the “exogenous” change in demand that potentially traces
out supply? Without such an instrumental variable, any empirical result is
suspect.

Since Roberts and Schlenker (2009) and (2010) make standard and sensi-
ble use of instrumental variables, asking for IV results is not an unreasonable
standard.

For an example of a recent paper that makes a particularly bad hash of the
difference between demand and supply, see Lywood, Pinkney, and Cockerill
(2009). This paper runs bivariate least-squares regressions (for example,
yield on price) and gives a naive causal “supply-side” interpretation to the
results.

Long run vs. Short Run An additional issue concerns short-run versus
long-run elasticities. Typically, it is easier to estimate short-run elasticities,
in part because it is easier to make statistical use of variables with a high
degree of variation across time. But, since a bio-fuel policy is expected to be
in effect for a reasonably long period of time, we would prefer to deal with
long-run elasticities when possible.

The long and short-run distinction is particularly important for land-use
elasticities. It is costly to transform land from one use to another and so
land is likely to be put into a new use only if an economic change is likely to
persist. They slow-moving nature of land-use change has been emphasized
since the seminal work of Nerlove (1956).

To estimate land-use elasticities, it is likely preferable to look at studies
that make use of persistent changes in the economic returns to land-use – for
example, differences in transportation cost in a geographical cross-section.
These long-run differences are likely to trace out something much closer to
the long-run land price-elasticity.

To summarize the lessons of econometrics:

1. Price, quantity, yield and land-use are jointly and simultaneously de-
termined in equilibrium.

• Therefore, correlations or traditional least-squares regression anal-
ysis of, e.g., price and yield reveal correlation, but nothing about
causation.
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• Classic “instrumental variables” (IV) solutions to this problem
instruct us to study supply via plausibly exogenous changes in
demand that can trace-out causal supply relationships.

2. Different empirical approaches will identify short vs. long-run elastici-
ties. For bio-fuels, we want the long-run elasticity and this is especially
important for land-use elasticities.

3. Too many studies used as the basis for parameter inputs to the GTAP
model ignore simultaneity and many focus only on short-run elasticities

3 Empirical Yield Estimates

There is a long tradition in agricultural economics (dating back to Wright
(1928) and Nerlove (1956)) that takes as obvious the notion that almost all of
the price-elasticity of supply comes from land-use rather than yield. In these
cases, changes in yields are treated as determined by technological change
(in the long run) and by weather (in the short run.)

However, there is a literature that attempts to estimate the price-elasticity
of yield. Unfortunately, most of this literature is quite bad, making use
of OLS regression fits and ignoring the classic results of the IV literature
just described. The classic “simultaneous supply” bias is in the direction of
finding supply that is too inelastic, or even having the wrong (negative) sign.
Sometimes price is high because of a bad supply shock (bad weather) and this
creates a possible (spurious) negative correlation between yields and prices.
However, many studies try to get around the joint effect of weather on prices
and yields by using an time-lagged “expected price” (often a futures prices
measured before planting), and in this case the direction of the bias is not as
obvious, especially if there is more than one unmeasured confounding factor.
For example: if demand from China happens to grow when technology is
improving faster than trend (and vice-versa), we will find a positive yield-
price correlation that does not reflect causation from price to yield.

The yield elasticity number used in the current GTAP results is 0.25.
This number is quite high relative to the existing empirical literature. Note
that it is much higher than the total supply elasticity estimated by Roberts
and Schlenker using plausibly correct IV methods.

Roberts and Schlenker (2010) employ the following empirical test for a
positive yield price-elasticity. They note that crop prices (and crop futures
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prices) are highly serially correlated over time. If yields are driven to a
noticeable degree by prices, then yields are also likely to be serially corre-
lated. Weather, however, it not noticeably serially correlated. Roberts and
Schlenker test the hypothesis that yields are themselves serially correlated.
Their statistical test rejects the hypotheses of serial correlation in yields,
which is consistent with yields driven by weather but not by price.

US Time Series Evidence Turning away from the recent data and rel-
ative (i.e. standard) econometric sophistication of Roberts and Schlenker,
Keeney and Hertel (2009) provide a summary of least-squares time-series
estimates of US corn yield-price elasticities. The Keeney and Hertel (2009)
summary provides the cited intellectual basis for the 0.25 yield elasticity esti-
mate used in the recent GTAP models. Unfortunately, this stated intellectual
basis is clearly contradicted by the actual written statements of the authors
of the cited papers.

Table 1 of this report gives information on the US time-series studies
reported in Keeney and Hertel (2009) (and also on one further US study
that was reported in working paper versions of the Keeney and Hertel paper.)
The studies in the table are Houck and Gallagher (1976), Menz and Pardey
(1983), Choi and Helmberger (1993) and Kaufmann and Snell (1997). The
table is modeled after the corresponding table in Keeney and Hertel (2009).

The first column of Table 1 gives the authors’ names and the second
column gives the time period for the data used in the study. The third
column gives the Keeney-Hertel (“KH”) reported elasticity. The last column
summarizes the differences between the Keeney and Hertel discussion and
the actual conclusions / comments of the authors in question. Houck and
Gallagher (1976) report a range of least-squares elasticity estimates on what
is now quite old data. This paper’s conclusions are accurately reflected in
the KH discussion.

The whole point of the Menz and Pardey (1983) paper is to call Houck and
Gallagher’s results into question when applied to more recent periods. While
they can replicate the Houck and Gallagher findings on older data, they
emphasize agronomic evidence that the marginal productivity of fertilizer,
at currently employed high levels, is very low and that further yield gains
in response to price are not at all likely. That is, Menz and Pardey in fact
argue on the basis of agronomic studies and on the analysis of then-recent
data that yields do not respond much to price. The discussion in Keeney
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and Hertel does not reflect this.
Using more recent data Menz and Pardey actually find a negative, al-

though statisticially insignificant effect of price on yield.
Choi and Helmberger (1993) are clearly sympathetic to the possibility of a

positive yield price-elasticity and seem somewhat frustrated that the idea has
little support in the literature. As in other papers, they find that fertilizer
use does move with prices. However, the fact is that they conclude that
they have no evidence that yields move with prices. Their own summary is:
“yields are found to be quite insensitive to price.” Indeed, once they control
for technological improvement via a time-trend, the yield-price correlation
is negative. It is not encouraging that Keeney and Hertel record this paper
as reporting a 0.27 yield-price elasticity, which is actually reported by the
authors themselves as the combined effect of technology and price. It is
completely non-standard, actually shocking, to simply assume that improved
technology has no effect on yields, but that is what Keeney and Hertel do in
this case.

Kaufman and Snell (1997) is the most recent paper in Table 1. It was
reported in working paper versions of Keeney and Hertel, but dropped from
the published version. Kaufman and Snell report an estimated yield elasticity
of 0.02 “at the sample mean.”

The US least-squares time-series evidence (such as it is) therefore supports
the opposite conclusion from what Keeney and Hertel report. Except for
the very old data of Houck and Gallagher, which Menz and Pardey believe
reflects a period of lower (but growing) average fertilizer use, the cited papers
all point to no evidence of any substantial yield-price elasticity.

Agronomic Evidence The Menz and Pardey agronomic argument is sup-
ported by other agronomic evidence for the US. Cerrato and Blackmer (1990)
is the highest cited paper on Google Scholar for the searches “corn yield re-
sponse,” “corn yield fertilizer” and several other similar searches. Figure
1 reproduces a table from that paper that fits various functional forms to
purely experimental data on the response of corn yields to fertilizer. One
point of the paper is that there is plausibly a plateaux above which increased
fertilizer use has no further effect. Another point is that average US fertilizer
use is at or near the plateaux level, so that the marginal productivity of fer-
tilizer is likely frequently near zero in actual use. One possibility, consistent
with Cerrato and Blackmer’s agronomic evidence, is that the marginal pro-
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ductivity of fertilizer is declining quite rapidly near the theoretical optimum
level. At such a point, fertilizing a little more has no bad consequence, but
fertilizing too little could have large negative consequences. This may lead
farmers to error on the side of adding additional fertilizer, with the outcome
that changes in fertilizer use have little impact at the margin. It is possi-
ble (but not obvious) that similar arguments could apply to other variable
inputs, like farm labor.

Figure 1: Cerrato-Blackmer Fits to Yield Experiments
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The magnitude of these differences indicates a need 
to justify selection of one model over other model!; 
when discussing economic and environmental trade. 
offs associated with N fertilization. 

Data in Table 3 indicate that, when evaluated by 
using the R2 statistic, the five models seem to fit thc 
yield data aboul equally well. Because there is little 
biological basis for selecting one model over other,; 
(Mead and Pike, 1975; Nelson et al., 1985), the R2 
statistic usually is usled to justify the use of a particular 
model. The limitatio'n of using the R2 statistic to select 
a model is further illustrated in Fig. 1 ,  which shows 
how each of the models fits the data from Site 5 in 
1986. Because there is only one correct economic op- 
timum rate of krtilxzation for each site-year, the ob- 
servation that models having similar R2 values differ 
greatly in determined values of economic optimuni 
rates indicates that R2 value is not a reliable criterio I 
for selection of a model for identification of economic 
optimum rates of N fertilization. 

The numbers in parentheses in Table 3 illustrate 
that use of the R2 statistic can result in a false sense 
of confidence concerning the ability of models to de- 

Table 2. Economic optimum rates of N fertilization predicted by each 
- model at each site-year.? 

- Predicted economic optimum rates of fertilization 

Site- Linear plus Quadratic plus Squarc: 
year plateau plateau Quadratic Exponential root - 

- kg ha-' _____ 

1-1986 
2-1986 
3-1986 

5-1986 

1-1987 
2-1987 
3-1987 
4-1987 

6-1987 

4-1986 

6-1986 

5-1987 

Mean 

I20 
198 
130 
130 
104 
133 
94 

111 
102 
152 
115 
149 
128 

173 
302 
196 
195 
163 
212 
124 
108 
153 
215 
154 
216 
184 

227 
302 
227 
236 
222 
241 
188 
141 
21 1 
245 
215 
24 1 
225 

242 
493 
218 
294 
222 
300 
156 
87 

194 
317 
205 
292 
252 

344 
323 
276 
504 
287 
680 
153 
75 

221 
870 
258 
560 
379 

t The fertilizer-to-corn price ratio used was 3.36, which is consistent with 
values of $0.0987 kg-' ($2.50 bu-I) for corn and $0.33 kg-' ($0.15 lb-I) for 
fertilizer. 

Table 3. Coefficients of determination (Rz values) for models tle- 
- scribing relationships between N rate and grain yields.? 

R* values 

Site- 
year 

2-1986 
3- 1986 
4-1986 

6-1986 

1-1986 

5-1986 

1-1987 
2-1987 

4-1987 
5-1987 
6-1987 

3-1987 

Mean 

Linear plus 
plateau 

0.90 (0.93) 
0.96 (0.98) 
0.78 (0.96) 
0.92 (0.99) 
0.94 (0.95) 
0.94 (0.98) 
0.85 (0.80) 
0.24 (0.77) 
0.73 (0.82) 
0.93 (0.91) 
0.89 (0.94) 
0.91 (0.95) 
0.83 (0.92) 

- 
Quadratic 

plus plateau 

0.91 (0.93) 
0.95 (0.98) 
0.82 (0.96) 
0.91 (0.99) 
0.05 (0.96) 
0.95 (0.98) 
0.85 (0.80) 
0.23 (0.77) 
0.75 (0.83) 
0.92 (0.94) 
0.88 (0.93) 
0.92 (0.97) 
0.84 (0.92) 

____ Quadratic Exponential Square rcot 

0.89 (0.93) 0.91 (0.93) 0.87 (0.93) 
0.97 (0.98) 0.94 (0.97) 0.90 (0.97) 
0.82 (0.97) 0.84 (0.94) 0.84 (0.93) 
0.90 (0.97) 0.89 (0.99) 0.83 (0.99) 
0.92 (0.95) 0.95 (0.96) 0.92 (0.96) 
0.95 (0.97) 0.94 (0.98) 0.91 (0.98) 

0.22 (0.78) 0.22$ 0.22 (0.8 1) 

0.91 (0.92) 0.90 (0.94) 0.84 (0.94) 
0.86 (0.90) 0.87 (0.94) 0.84 (0.90) 
0.91 (0.96) 0.91 (0.97) 0.89 (0.57) 
0.82 (0.91) 0.82 (0.95) 0.79 (0.5 3) 

- 

0.79 (0.82) 0.761: 0.73 (0.89) 

0.75 (0.80) 0.75 (0.83) 0.74 (0.83) 

t Values in parentheses indicate R2 values obtained when models were fitted 

$ Values could not be obtained because the model failed to fit yield data born 
to response data from only four rates of N (0, 112, 224, 336 kg ha-'). 

these sites. 

scribe responses to N when too few treatments are 
used. That is, greater R2 values were obtained when 
only four N treatments were considered than when all 
10 treatments were considered. Although these differ- 
ences can be reduced by adjusting the R2 values for 
degrees of freedom (Darlington, 1968; Judge et al., 
1982; Blackmer and Meisingel-, 1990), this adjustment 
usually has not been made in fertilizer response stud- 
ies. We believe this is a notable problem because most 
fertilizer N response studies involve four or fewer N 
treatments and because the ability of models having 
high R2 values (e.g., 0.90 or higher) to identify opti- 
mum rates of fertilization has not been questioned. 

Data in Table 4 show that the models predicted sim- 
ilar maximum yields at each site-year, although the 
square root model tended to predict slightly higher 
maximum yields than did the other models. The va- 
lidity of this model for predicting maximum yields, 
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data for one site-year (Site 5 in 1986). 
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Double Cropping Arguments about price-induced fertilizer use have a
long history. Recently, Babcock and Carriquiry (2010) have raised the is-
sue of price-induced double-cropping. In research “supported in part by the
National Biodiesel Board,” the authors do not present formal statistical or
econometric evidence about double-cropping, but rather discuss anecdotes
about recent double-cropping experience. The number of data points pre-
sented is too small to make any robust statistical inference.

While Babcock and Carriquiry do not argue for a large price-induced
effect of double-cropping in the US, they argue for a large effect in Brazil.
The Brazilian double-cropping data is given in Table 18 of their paper. That
table shows the share of Brazilian double-cropped land declining from about
0.19 in 2003 to about 0.15 in 2006. There is then a single dramatic increase,
from 0.15 to 0.22 in 2007. In 2008 the share increases slightly and then falls
by the same small amount in 2009.

The Babcock and Carriquiry calculation is only sketched (and not fully
explained) but it appears to be primarily driven by that very large increase
from 2006 to 2007.5 USDA data shows that the large run-up in soybean
prices occurred from the 2006/2007 market year to the 2007/2008 market
year, arguably at least partly after the large reported (Table 18) increase in
double-cropping. At the least, for the Babcock and Carriquiry result to be at
all plausible, the authors would need to detail the exact timing of the actual
price increases as compared to the timing of planting decisions in Brazil.

In addition, if the profitability of double-cropping increases as prices in-
crease, then this will also have an effect on the demand for farm land in
Brazil. New land can be double-cropped as well, which increases the prof-
itability of transforming forest to cropland (for related points see Feng and
Babcock (2008).)

More fundamentally, though, the Babcock and Carriquiry anecdote is
about one price increase in one country for one crop. It is an anecdote that
suggests that at least sometimes prices can effect yields. Because it applies
to one year for one crop in one country, even Babcock and Carriquiry note
that it in no way supports the 0.25 elasticity number applied in all years to
all crops in all countries. At best, this is a Brazil specific soybean effect. At
worst, it is poorly explained, cherry-picked anecdote.

5There are a number of oddities in the discussion in the paper. For example, the text
says that there was a 150% increase in double cropping from the 2004-2006 period to the
2007-2009 period. However, the table shows an increase from about 0.15 to only about
0.24. Overall, it is nearly impossible to make out the details of the argument.
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Farm Level Studies Turning away from time-series (and anecdotal) ev-
idence, there are yield studies at the level of the individual farm. These
studies have the advantage of controlling for otherwise unobserved qualities
of the soil, for the talent of the farmer and for variations in local knowledge
or practice. Hertel, Stiegert, and Vroomen (1996) summarize these studies as
finding little or no response to prices. Hertel, Stiegert, and Vroomen (1996)
attempt to “reconcile” the supposedly positive yield elasticity findings of the
time-series literature with the lack of such findings at the farm level. How-
ever, as we have seen, the time-series literature itself provides little evidence
of a positive yield elasticity.

Hertel, Stiegert, and Vroomen (1996) correctly note a role for heterogene-
ity in farmers productivity and talent. They propose that higher prices may
lead to more productive farmers taking over the land of less talented farmers,
generated a yield increase even though the “farmer-specific” yield remains
constant. This is an interesting theory, not backed up by direct evidence.
The overall thrust of the productivity literature is that the marginal firm (on
the border of exit and entry) is typically not very productive. An alternative
hypothesis is that, on the extensive margin of exit / entry, rising prices draw
less productive farmers into the market. The balance of these two possible
factors (faster growth by productive farmers on the “intensive” margin versus
less productive farmers / farms entering on the extensive margin) is simply
not known.

County Level Panel Data More recently, Huang and Khanna (2010)
use data at an intermediate level of aggregation, between the level of the
country (or world) and the level of the individual farm. They use “modern”
panel-data techniques to study US county-specific data for 1977-2007. They
find a yield-price elasticity of 0.15 for corn, 0.06 for soybeans and 0.43 for
wheat. Note that the value for corn is 40% lower than the current GTAP
estimate and the value for soybeans is lower yet, while the value for wheat
is quite high. The Huang and Khanna estimates are only in working paper
form and the “Arellano-Bond” empirical technique that they use is some-
what difficult to relate to standard instrumental variables arguments and
implicitly relies on timing assumptions about when productivity shocks are
observed and when variable inputs are chosen (see Ackerberg, Caves, and
Frazer (2006).) It would be easier to evaluate the Huang and Khanna work
if in future versions the authors can describe what is the assumed nature of
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the unobserved shock to yield and land use – i.e. is the unobservable shock
just serially uncorrelated weather, or can there be serially correlated shocks
from technology or regulation?

If the Huang and Khanna yield result is taken seriously (and it is, frankly,
one of the few “modern” studies) then their land elasticities should also be
taken seriously. They find own-price land elasticities of 0.51, 0.49 and 0.07
for corn, soybeans and wheat, respectively. However, some of this elastic-
ity comes from cross-crop substitution. The composite land elasticity, with
respect to an overall crop-price index, is 0.257. Unfortunately, the GTAP
model does not make it easy to compare these straight-forward numbers to
the highly implicit land-elasticity assumptions in the GTAP model.

Taken together, the Huang and Khanna results indicate that a large frac-
tion of the price elasticity of corn supply comes from land (not yield) and
almost all of the incremental soybean supply comes from land (not yield.)
The opposite is found to be true for wheat.

3.1 Evidence from Recent Data

Much of the discussion of yield price elasticities is based on quite old data.
(Exceptions include Roberts and Schlenker (2010) and Huang and Khanna
(2010).) To address this problem, and also to illustrate the issues involved,
I downloaded data from the USDA on U.S. corn yields and prices.

Figure 2 shows a long time series of US corn yields, together with a flexible
time trend, while Figure 3 displays similar data for inflation-adjusted corn
prices. Note that yields trend steadily upward, with sharp downward spikes
that are consistent with bad weather in a particular year. There is perhaps
a slowdown in yield growth in the middle of the data, that may or may not
have recently reversed.

Prices follow a more complicated pattern. Real prices tend to fall over
time, with periods of strong upward movement. This is consistent with a
causal story in which technology increases yields over time, which in turn
reduces prices. Surely, this is the primary story about yield and price.

Figure 4 shows a scatterplot of the log yield and price data. The strongly
downward sloping line is the OLS “best fit” line. To the degree that some
researchers want to defend OLS estimates of elasticities, they should be pre-
pared to confront this strongly downward sloping line, which if interpreted as
a yield-price elasticity would imply a negative effect of price on yield (consis-
tent, for example, with Menz and Pardee’s result on their later data period.)
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Figure 2: Log US Corn Yield and Trend
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The slope of the relatively flat line represents a simple instrumental vari-
ables estimate of the yield-price elasticity. This is from an IV regression of
log-yield on log-price, controlling for a linear time trend. The instrument for
log-price is just lagged (by one year) log-price, which is a valid instrumental
variable if (and only if) the only unobservable source of variation in yields
(in addition to price) is a serially uncorrelated shock, like weather.

The estimated elasticity from this IV regression is 0.03, with a standard
error of 0.11. This is one standard error lower than the Huang and Khanna
value of 0.15 and two standard errors away from 0.25. The hypothesis of a
0.25 yield elasticity is therefore rejected by this model at a 5% significance
level.

Allowing for a more complicated non-linear time trend results in a slightly
negative yield elasticity estimate.

The result illustrated in Figure 4 is quite simple, but it has the advantage
of using recent data and of relying on a very simple identifying assumption
(that the unobserved shock to yields is serially uncorrelated, while farm prices
themselves are serially correlated.)

Figure 4: Log Yield and Log Price, with Fitted Values from OLS and IV
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3.2 Conclusion on Yields

In summary, then, the great bulk of empirical evidence points to yield price-
elasticities that are close to zero and not close to the values used in recent
versions of the GTAP. Further and better research on yields could change this
view, but in the meantime it is not responsible to simply assume a high value
of for the yield elasticity relative to the assumed values for land elasticities.

Do recall once again that it is relative elasticities that matter. Specula-
tions about why yield elasticities might be higher than found in actual empir-
ical work could and should be matched by speculations about why land-use
elasticities might be higher. Technological change and directed research can
make previously marginal land into prime agricultural acreage. This appears
to have happened in Brazil, where much land used for soybeans was previ-
ously thought to be uneconomic. The short-run / long-run distinction is even
more important for land than for yield. A long-run increase in prices may
spur political and social investments that are complementary to land use.
As examples, consider highways extended to previously inaccessible areas or
consider better enforcement of agricultural property rights.

A focus on speculative reasons for high yield elasticities unaccompanied
by speculation on reasons for high land elasticities gives the appearance of a
pre-conceived agenda and should be avoided.

Several papers, including those most emphasized by Keeney and Hertel,
find in the words of the reseachers themselves that the yield-price elasticity
cannot be distinguished from zero. This is consistent with a long tradition
on agricultural economics, which frequently treats yields as determined by
long-run technology and weather, but not by prices. Roberts and Schlenker,
in recent high quality work, support a similar view. In results just reported,
I find a similar result in a simple model using a long and recently updated
time series of USDA data.

However, there is much resistance to a literal value of zero for the yield-
price elasticity. There is evidence that farm inputs (such as fertilizer use)
respond to prices, which is consistent with some positive value for the yield
elasticity. This view has some merit, although it does not support any par-
ticular positive value, such as 0.25. Agronomic evidence is consistent with
the idea that in the modern developed world, increases in fertilizer use will
have (at the margin) relatively small effects on yields.

One of the larger empirically estimated values for the US corn price elas-
ticity, at least in recent literature, is the 0.15 value found by Huang and
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Khanna (who find a lower value for soybeans and a higher value for wheat.)
This seems to be a reasonable “high” value for the elasticity. A point es-
timate that is positive but quite close to zero, such as the 0.03 estimate
just discussed, is also easy to defend. Averaging 0.03 and 0.15 gives a 0.09
estimate, which (given all the imprecision) is naturally rounded to 0.10.

Based on all the empirical evidence, and taking into account the “input-
based” arguments against an elasticity value of zero, I would recommend a
yield-price elasticity value of 0.10. Larger values, such as 0.25, have little to
no support in the empirical literature. The initial use of 0.25 was based on
a reading of the literature that simply ignores the clearly stated conclusions
of the researchers being cited. On the other hand, while a value very close
to zero could easily be defended, a value of exactly zero would conflict with
evidence that farmers do respond in some ways to price increases. The value
0.10 avoids this last problem.

4 Demand Reduction as Source of Carbon

Gain

Roberts and Schlenker (2010) estimate that reduction in human consump-
tion of grains would account for about 1/3 of the biofuel stock. This follows
directly from their (relatively credibly) estimated demand and supply elas-
ticities. GTAP and other CGE models often find a similarly large (or even
larger) demand reduction. For example, Edwards, Mulligan, and Marelli
(2010) use the GTAP model and find that (after adjusting for by-products)
every ton of corn used for ethanol is associated with a 0.52 ton reduction in
the human consumption of corn. The similar figure for wheat is 0.46 tons.

The standard GTAP accounting takes “carbon credit” for the reduced
consumption. Searchinger (2010) notes that this amounts to taking credit
for the carbon that humans fail to exhale (and excrete and so forth) because
they are eating less food. It treats carbon-rich human breath as a pure “social
bad.” Treating human food consumption in this way raises important moral,
economic and political concerns.

The reduction in food consumption has a potentially very large social wel-
fare impact. Roberts and Schlenker (2010) find that a simple biofuel mandate
that makes use of 5% of world calorie consumption reduces consumer surplus
by $155 billion worldwide.
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While the predicted price increases reduce consumer surplus, they also
increase producer surplus: farm incomes go up. This of course explains
much of the political economy of bio-fuel policy. One traditional economic
approach would be to add up the changes in consumer and producer surplus
and compare them to the dollar-valued “social benefit” of carbon reduction.

There are several problems with this approach. First, the CARB / GTAP
exercise involves carbon accounting in units of carbon, not social welfare
accounting in dollars. There is a very difficult question of how to translate
“lost consumer surplus from reduced food consumption”’ into units of carbon.

Another problem is with treating all social gains and losses equally. It
will seem reasonable to many observers to treat the food losses to the world’s
poorest consumers (who are likely to be, by far, the most elastic consumers of
unprocessed food) as much more important than the effects of small increases
in the price of processed food eaten by consumers in the developed world.

To take one’s “moral pulse” on this question, one can ask if one would be
willing to combat global warming by undertaking direct efforts to reduce the
food consumption of the world’s poorest families. Such a policy would have
the same beneficial carbon effects as the consumption reductions predicted
by the GTAP model. If one would not be willing to take such steps to deprive
poor families of food directly, then one should not take “carbon credit” for
implementing the same steps indirectly via the market for food.

There are several possible objections to the argument above. The first is
that one would be willing to combat global warming by taking direct steps to
limit the food consumption of the already poor. This is a moral disagreement
that is not amenable to empirical resolution.

A second objection is that rising food prices would help the global poor
who are also producers of food. Some food aid groups have apparently argued
that food aid, by reducing prices, hurts poor farmers. According to this story,
the urban poor might be hurt by rising food prices, but the rural poor would
be helped and the two effects might roughly cancel out.

This second argument is amenable to empirical study and there is some
evidence available. First, note that subsistence farmers who grow some food
for personal consumption but do not sell food into the market are not aided
by rising prices (unless the price rise is sufficient to draw them into the
market.) Keeping this in mind, Levinsohn and McMillan (2007) study the
effect of food aid (modeled as a reduction in the price of wheat) in Ethiopia.
They summarize their findings as follows:
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We find that food aid in Ethiopia is ”pro-poor.” Our results in-
dicate that (i) net buyers of wheat are poorer than net sellers of
wheat, (ii) there are more buyers of wheat than sellers of wheat
at all levels of income, (iii) the proportion of net sellers is in-
creasing in living standards and (iv) net benefit ratios are higher
for poorer households indicating that poorer households benefit
proportionately more from a drop in the price of wheat. In light
of this evidence, it appears that households at all levels of in-
come benefit from food aid and that - somewhat surprisingly -
the benefits go disproportionately to the poorest households.

I know of no empirical evidence to the contrary. This finding refutes the idea
that net sellers of food, who would benefit from price increases, are nearly
as poor as the net purchasers of food who would benefit from lower prices.

A third counter-argument to the concern about food reductions is to
argue that food consumption would not decline at all. First, if this is true
the GTAP results are incorrect and need to be changed. One argument
that might be made is that food demand is quite inelastic and therefore any
reduction in food consumption is implausible. This perhaps confuses absolute
and relative elasticities. Since supply elasticities are also low, reductions in
food consumption are plausible even when demand is quite inelastic (again,
see Roberts and Schlenker (2010).)

Another related argument is that third-world countries will subsidize food
consumption to keep it from falling. This is said to have perhaps occurred
in response to the food commodity price increases that were observed prior
to the recent economic crash. Again, if counter-subsidization is the correct
model of demand, then the standard GTAP model is incorrect and needs to
be changed to account for this.

If CARB agrees that it is not moral to take “carbon credit” for taking
food out of the mouths of the poor, then one can suggest two ways of chang-
ing the models and/or the accounting. Hertel, Golub, Jones, M, Plevin, and
Kamme (2010) alter the GTAP model to hold food consumption fixed. This
is similar to implementing the “counter-subsidization” scenario where gov-
ernments do not allow food consumption to fall. The equilibrium model is
otherwise allowed to adjust, so that further production changes (land and
yield increases and so forth) take place in response to the fixed amount of
food consumption. This approach may be best if the “counter-subsidization”
scenario seems plausible.
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Otherwise, one could simply “not count” the carbon benefits of the re-
duced food consumption. This approach amounts to assuming that the social
cost of the reduced food consumption is exactly matched by the social benefit
of the carbon reduction. It does not treat the reduced food consumption as
on net “bad,” but neither does it treat it (as in the standard GTAP result) as
“good.” This approach is apparently under consideration by the European
Union’s Joint Research Centre.

5 Other Issues

In this section I very briefly discuss other matters that are worthy of further
consideration and research. In these areas, I do not have a current recom-
mendation for a short-term fix, but as a multi-year regulatory process moves
forward it would be good for these issues to receive further attention.

5.1 Yields on New Land

Farmers presumably make use of the best available land first when deciding
where to locate production. This economic “selection” effect implies that
land newly brought into production will be worse in some way as compared
to land that was previously used. It might feature worse yields, have higher
input requirements or it might be badly located with respect to transporta-
tion or to competing land uses that bid up the price of land.

The GTAP model has to assume something about the yield of new land.
Earlier versions picked an entirely ad-hoc number. More recently, the GTAP
model has been tied to a sophisticated biological model of the land’s ability
to grow a standardized reference crop. This is clearly a big improvement over
an arbitrary guess.

However, a purely biological model ignores the economic selection effect
just mentioned. If there is highly biologically productive land that is not used
for farming, why is it not being used already? It must be that it has other
disadvantages in terms of transportation, land use regulation, or competition
with alternative uses. Perhaps it is in a protected park, or in a war zone or
in a region without roads.

The biological model being used sometimes predicts that in some region
land not used for agricultural is more productive on average than land used
for agriculture. This fails a kind of sanity check, not with respect to the
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biology but with respect to economics. There must be some problem with
the apparently productive land or else it would already be in use.

I understand that current GTAP runs cap the yield of new land at 100%
of the yield of old land, even when the model says that new land should be
more productive. This is a start at imposing economic logic on the model
for yields on new land.

The purely biological model of the yield of new land should be, in the
medium run, augmented with a more complete economic model that asks
why apparently productive land isn’t currently used. In this case, biology
cannot substitute for economics.

The effect of ignoring the economic selection of land is to overstate the
productivity of the marginal land that is pulled into production by a price
increase. The biological model assumes that productive land not currently
used is readily available for future production, whereas an economic selection
model would take into account the reasons why such productive land is not
currently used, and therefore might be unlikely to be used in the future as
well.

The effect of using the purely biological model is therefore to understate
the indirect land use cost of biofuels.

5.2 Land Use Elasticities

The GTAP model has to decide how much land is draw into production when
prices rise, and also where that land is located and exactly what crops are
grown on it. This is a very large set of elasticities, and as usual the existing
empirical literature is not nearly as helpful as one would hope.

One very important point is that unmanaged forest is missing from the
GTAP model because that particular model requires the existence of an
observed land-rent. The absence of unmanaged forest seems a very serious
problem, since the transformation of unmanaged forest into agricultural land
would have very serious carbon consequences.

Gibbs, et al, (2010) indicates the magnitude of the possible problem. The
abstract of that paper reads in part:

Across the tropics, we find that between 1980 and 2000 more
than 55% of new agricultural land came at the expense of intact
forests, and another 28% came from disturbed forests.
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It is a very important question whether the GTAP predictions are at all
consistent with this result. Gibbs et al (2010) does not attempt to distinguish
supply from demand effects and so it is not a definitive statement about the
likely pattern of demand-driven land-use change, but the potential carbon
issue is clear. There is at least the strong possibility that a large portion of
new land will be transformed from intact tropical forests and GTAP is not
systematically modeling unmanaged forest.

Other concerns, listed briefly:

• The empirical issues of the simultaneous determination of price and
land use apply here. How do the GTAP elasticities compare to elas-
ticities determined by conventional IV methods? Again, Roberts and
Schlenker (2010) provide such estimates and Huang and Khanna pro-
vide a table of results from their own and other models.

• GTAP models are largely based on US results. Other regions have
very different land-use rules, capital markets, agronomic features and
so forth.

• It is hard enough to get an empirical estimate of the “aggregate land
elasticity.” It is harder still to get all the needed cross-land use elastic-
ities (e.g. elasticity of the use of land for wheat with respect to price
of corn.)

• The GTAP CET production function has to impose many of these
cross-price effects via functional form governed by a few parameters.

• Other kinds of empirical studies can use richer empirical specifications
(For example: Lubowski, Plantinga, et al used relatively flexible logit
models.) How different are the implications of different models?

5.3 Trade Elasticities

The GTAP model makes use of “Armington” trade elasticities, which were
originally proposed as a method for dealing with the observed fact that much
consumption seems to be “home biased” even when trade barriers are low or
non-existent.

There are two problems with the GTAP’s use of Armington elasticities.
The first is that they are (once again) estimated by least squares rather than
by credible instrumental variable methods.
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The second issue is that modern trade theory has rejected the Arming-
ton model as unrealistic. The Armington model keeps trade patterns from
changing “very much,” which can be too extreme an assumption. Modern
trade theory relies on a combination of transportation costs and product dif-
ferentiation to explain the apparent home bias in consumption. By far the
best cited papers of recent trade theory are Eaton and Kortum (2002) and
Melitz (2003), the latter of which extends the Dixit-Stiglitz-Krugman frame-
work. Both of them emphasize product differentiation and transportation
costs and neither make any use of Armington elasticities. For a recent Ph.D.
paper that criticizes the empirical performance of traditional CGE models
and uses an Eaton-Kortum framework, see Caliendo and Parro (2010).

According to recent trade approaches, commodities (like ethanol) that are
basically undifferentiated should flow fairly freely in international trade, with
price differences across regions reflecting transportation costs but very little
additional “home bias.” This prediction is not similar to the Armington
model and it has large consequences for the location of production. The
Armington model will predict a greater tendency for production to take place
in the region of final consumption.

6 Conclusions

Because all of the positive gains from bio-fuel use are market mediated (and
in that sense “indirect”), some kind of equilibrium economic model is needed
to evaluate bio-fuel policy. The GTAP model features relative sophistication
on the theoretical side but (in common with other CGE models) its empir-
ical inputs are often weak. This follows partly from the weakness of the
underlying empirical literature.

In the case of yield elasticities, the empirical work cited in the GTAP
research literature substantially misstates actual empirical results and vastly
misrepresents the clearly stated opinions of the authors of cited research.
The existing empirical literature generally points to yield price elasticities
that are difficult to distinguish from zero. Even when one takes into account
arguments that the yield elasticity should be positive and not strictly zero,
it is very hard to argue for yield elasticities much in excess of 0.1.

The use of 0.10 as a yield elasticity could be defended on intellectual
grounds, whereas the use of 0.25 is without scientific basis.

Speculation about possible reasons for a higher yield elasticity does not
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justify a different course of action, as one could equally well speculate about
higher land-use elasticities. Since it is the relative elasticities that matter for
the carbon accounting, such speculation about yield but not land elasticities
would indicate an obvious bias.

The incorrect yield elasticities used in the current GTAP modeling clearly
bias the reported finding toward a lower indirect land use cost of biofuels.
This bias is easily corrected via the use of a 0.10 value for the yield elasticity.

The use of a purely biological model of the productivity of new land,
while a clear intellectual improvement over early purely ad-hoc estimates,
also biases downward the indirect land use cost of biofuels, as compared to a
more appropriate combined economic / biological model that explains why
apparently highly productive land is not currently farmed. However, such a
model would be difficult to introduce in the very short run.

It is likely that the GTAP treatment (or lack of treatment) of unmanaged
land also biases the indirect land use cost downward, although this is some-
what harder to establish with certainty, at least without actually changing
the model and re-running it. Unfortunately, such a change would require
dealing with fundamental problems in the GTAP land use model.

Other problems with GTAP inputs may also bias the model, but not
clearly in one direction.

Aside from problems with inputs to the model, carbon policy-makers
should understand the difficulties with treating reduced consumption of food
by humans as a pure social good, as in done in the current baseline GTAP
/ CARB result. Such a policy stance may be unlikely to find broad moral
support. Two possible solutions are to either [i] hold the consumption of
food fixed in the GTAP model or [ii] simply decide not to count as a carbon
credit the reduced emission of carbon from humans (as in the carbon exhaled
by humans.) The GTAP model has already been adapted for the first course
and the second course may also be feasible within the current model.
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