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Abstract

We examine identification of differentiated products demand when one
has “micro data” linking the characteristics and choices of individual con-
sumers. Our model nests standard specifications featuring rich observed
and unobserved consumer heterogeneity as well as product/market-level
unobservables that introduce the problem of econometric endogeneity.
Previous work establishes identification of such models using market-
level data and instruments for all prices and quantities. Micro data
provides a panel structure that facilitates richer demand specifications
and reduces requirements on both the number and types of instrumental
variables. We address identification of demand in the standard case in
which non-price product characteristics are assumed exogenous, but also
cover identification of demand elasticities and other key features when
these product characteristics are endogenous and not instrumented. We
discuss implications of these results for applied work.
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1 Introduction
Demand systems for differentiated products are central to many questions in
economics. In practice it is common to estimate demand using data on the
characteristics and choices of many individual consumers within each market.
This setting is often referred to as “micro data,” in contrast to another com-
mon case in which only market-level outcomes are observed.1 At an intuitive
level, the panel structure of micro data seems to offer more information than
market-level data alone. But in what precise sense does micro data help?
How significant are its advantages? What specific kinds of variation within
and across markets are helpful, and how?

This paper explores these questions by examining nonparametric identifi-
cation in a model substantially generalizing standard demand models used in
a large literature building on Berry, Levinsohn, and Pakes (1995, 2004). Micro
data provides a panel structure, with many consumers in each of many markets.
A key benefit is that unobservables at the level of the product×market remain
fixed as consumers’ attributes and choices (quantities demanded) vary within
a given market. We show that identification can be obtained by combining this
clean “within” variation with cross-market variation in choice characteristics,
market characteristics, prices, and instruments for prices (only). Compared to
settings with only market-level data, this both allows a more general demand
model and substantially reduces instrumental variables requirements.

Although we focus exclusively on identification, our aim is to inform the
practice and evaluation of empirical work. The celebrated “credibility revolu-
tion” in applied economics has redoubled attention to identification obtained
through quasi-experimental variation, such as that arising through instrumen-
tal variables, geographic boundaries, or repeated observations within a single
economic unit. Identification of demand presents challenges that are absent in
much of empirical economics (see, e.g., Berry and Haile (2021)). Nonetheless,
we show that these same types of variation allow identification of demand sys-
tems exhibiting rich consumer heterogeneity and endogeneity. Nonparametric
identification results do not eliminate concerns about the impact of paramet-
ric assumptions relied on in practice. However, they address the important
question of whether such assumptions can be viewed properly as finite-sample
approximations rather than essential maintained hypotheses. Identification
results can also clarify which assumptions may be most difficult to relax, re-
veal essential sources of variation, point to specific roles that functional forms
may play in practice, offer assurance that robustness analysis is possible, and
potentially lead to new (parametric or nonparametric) estimation approaches.

1See Berry and Haile (2021) for a discussion of other forms of data, including consumer
panels and hybrids such as that in Petrin (2002).
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Our most important message for applied work is that micro data has a
high marginal value over market-level data alone. Availability of instrumental
variables is the most important and challenging requirement for identifica-
tion of demand, and micro data can substantially reduce both the number
and types of instruments needed. Berry and Haile (2014) showed that with
market-level data, nonparametric identification typically requires instruments
for all quantities and prices. There, the so-called “BLP instruments” (i.e.,
exogenous characteristics of competing products) play a crucial role as instru-
ments for quantities.2 In contrast, here we find that with sufficiently rich
micro data the only essential instruments are those for prices. This cuts the
number of required instruments in half and avoids the necessary reliance on
BLP instruments. This in turn permits a more flexible model of how non-price
product characteristics affect demand and avoids the necessity that at least
some such characteristics be exogenous. Micro data also opens the possible
use of additional classes of instruments.

We also show that it is often possible to identify the ceteris paribus effects
of prices on quantities demanded—critically, e.g., own- and cross-price demand
elasticities—when observed non-price characteristics of products/markets are
endogenous and not themselves instrumented. This requires that instruments
for prices remain valid when conditioning on the endogenous non-price ob-
servables.3 We show that standard instruments (or variations thereon) can
satisfy this requirement under many models of endogeneity. Our analysis of
instruments for this case makes elementary use of causal graphs, which provide
attractive tools for evaluating the necessary exclusion condition. Endogenous
product characteristics are an important concern in the applied literature on
differentiated products, and it can be difficult to find instruments for all such
characteristics. Thus, our findings expand the range of applications in which
primary features of interest can be identified despite these concerns.

Our model and setting incorporate several key features. First, as in the
large empirical literature building on Berry (1994) and Berry, Levinsohn, and
Pakes (1995, 2004), we model market-level demand shocks (unobservables at
the level of the product×market) that result in the econometric endogeneity
of prices. These shocks make identification of demand nontrivial and create a
(perhaps counterintuitive) need for non-price sources of variation. Accounting
for these demand shocks is essential to the identification of policy-relevant fea-
tures such as demand elasticities and equilibrium counterfactuals. This drives
our focus on market-level endogeneity and cross-market data, differentiating

2Instruments for quantities are what have sometimes been referred to informally as in-
struments for the “nonlinear parameters” in the applied literature using random coefficients
discrete choice models. Berry and Haile (2021) provide additional discussion.

3This is related to well-known results regarding endogenous controls in regression models.

2



our work from much of the prior research on the identification of choice models
with micro data.4 To our knowledge, the examination of identification with
market-level data in Berry and Haile (2014) offers the only prior nonparametric
identification results applicable to the workhorse models of the large empirical
literature that motivates our work.

Second, the panel structure of consumers-within-markets is essential to
the questions we ask. It is what distinguishes micro data from market-level
data. This panel structure is responsible for the reduction in the number of
needed instrumental variables, as well as the elimination of restrictions on the
way product-level observables enter demand. These features contrast with
the setting and model in Berry and Haile (2014). There the demand system
(especially if combined with a model of supply) also connects to nonparametric
simultaneous equations models, as studied by, e.g., Benkard and Berry (2006),
Matzkin (2008, 2015), Blundell, Kristensen, and Matzkin (2013, 2020), and
Berry and Haile (2018). However, the panel structure essential to the present
paper is absent in all of that prior work.

Third, our model avoids requirements that consumer-level observables be
exogenous, that they have large support, or that certain consumer observ-
ables be linked exclusively to the desirability of specific products. The last
of those requirements is widely used (often in combination with large support
and exogeneity assumptions) in “special regressor” approaches to identification
of consumer-level discrete choice models,5 but is often difficult to motivate in
practice. More natural are situations in which multiple consumer-level ob-
servables interact to alter tastes for all goods. As a simple example—one
illustrating a broader interpretation of “demand”—consider a discrete choice
model of expressive voting in a two-party (“R” vs. “D”) election, applied to
survey data matching individual reported votes to voter sociodemographics.6
Although voter-specific measures like age, income, gender, race, and educa-

4This includes prior work on discrete choice models allowing market-level demand shocks
only though composite error terms—one for each choice—representing all latent heterogene-
ity (e.g., Lewbel (2000)). Explicit modeling of demand shocks also makes clear that the
functional form assumptions permitting application of control function approaches (Blun-
dell and Matzkin (2014)) generally fail, even in standard parametric models. See Berry and
Haile (2021) for further discussion of the challenges created by these demand shocks.

5See the review by Lewbel (2014) and references therein. A very early version of this
paper (Berry and Haile (2010)) featured an example of such an approach. In practice,
geographic distances are often modeled as providing consumer-level variation exclusive to
each product. But even these are inherently restricted to lie on a 2-dimensional surface in
RJ

+, since the underlying consumer heterogeneity reflects only consumer locations.
6Candidate spending, rather than price, often plays the role of the endogenous choice

characteristic—one whose effects are sometimes of primary interest. See, e.g., Gerber (1998)
and Gordon and Hartmann (2013).
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tion may provide rich variation in preferences between the two parties (and
the outside option to abstain), no such measure is naturally associated exclu-
sively with the attractiveness of a single option.

Fourth, although we initially emphasize discrete choice demand, this is not
essential. The structural feature of interest in our analysis is a demand function
mapping observables (at the level of market, products, and consumer) and a
vector of market-level demand shocks to expected quantities demanded. This
can allow continuous demand as well as departures from common assumptions
regarding consumers’ full information or rationality.

Of course, our results do require some structure, including conditions on
sources of variation. In addition to instruments for prices satisfying standard
conditions, we rely on three important assumptions. One is a nonparametric
index restriction on the way market-level demand shocks and some observed
consumer attributes enter the model.7 The second is injectivity of the map-
pings that link observed consumer attributes to choice probabilities. Below
we connect these requirements to canonical specifications from the literature.
Finally, we require at least as many observed consumer attributes as goods.

This final requirement is tightly related to our focus on the extent to which
micro data can fully eliminate the need to instrument for the endogenous
quantities in a flexible nonparametric demand model that, e.g., places few re-
strictions on substitution patterns or how price effects vary across products.
In practice, some settings—particularly those with a large number of goods—
may lack the dimension of variation we require for the most flexible models.
This motivates our exploration (in the Supplemental Appendix) of trade-offs
between common modeling assumptions and the types/dimension of variation
sufficient for identification. For example, we discuss semiparametric restric-
tions that can allow identification (even with a large choice set) with a single
consumer-level observed attribute having only binary support.

Our results are relevant to a large empirical literature exploiting micro
data to estimate demand. A classic example is McFadden’s study of trans-
portation demand (McFadden, Talvitie, and Associates (1977)), where each
consumer’s preferences over different modes of transport are affected by her
available mode-specific commute times and other factors. This example illus-
trates an essential feature of the type of micro data considered here: consumer-
specific observables that alter the relative attractiveness of different choices.
Consumer distances to different options have been used in a number of applica-
tions, including those involving demand for hospitals, retail outlets, residential

7In contrast to related conditions in Berry and Haile (2014, 2018) or Matzkin (2008),
here each index depends on observed consumer attributes rather than observed product
characteristics (which are fixed within markets), and there is no requirement that these
observables be exogenous.
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locations, or schools, as in the examples of Capps, Dranove, and Satterthwaite
(2003), Burda, Harding, and Hausman (2015), Bayer, Keohane, and Tim-
mins (2009), and Neilson (2021). More broadly, observable consumer-level at-
tributes that shift tastes for products might include income, sociodemographic
measures, or other proxies for idiosyncratic preferences. For example, income
and family size have been modeled as shifting preferences for cars (Goldberg
(1995), Petrin (2002)); race, education, and birth state have been modeled as
shifting preferences for residential location (Diamond (2016)). Other promi-
nent examples include applications to demand for grocery products (Ackerberg
(2003)), newspapers (Gentzkow and Shapiro (2010)), neighborhoods (Bayer,
Ferreira, and McMillan (2007)), and schools (Hom (2018)).8 An important
feature of many examples, reflected by our model, is that the typical consumer-
level observable cannot be tied exclusively to a single good.

In what follows, section 2 sets up our model of multinomial choice demand.
Section 3 connects this model to random coefficients random utility specifica-
tions widely used in practice. We present our identification results in section 4.
We discuss some key implications for applied work in section 5 before conclud-
ing in section 6. Appendix A examines the proper excludability of standard
instruments for prices when non-price observables are endogenous and unin-
strumented. A Supplemental Appendix discusses variations on our baseline
model, including continuous demand and examples in which key assumptions
can be relaxed by strengthening others.

2 Model and Features of Interest
We consider choice among J goods/products and an outside option (indexed
as good 0) by consumers i in “markets” t. Formally, a market is defined by:

• a price vector Pt = (P1t, . . . , PJt);

• a set of additional observables Xt;

• a vector Ξt = (Ξ1t, . . . ,ΞJt) of unobservables;

• a distribution FZ (·; t) of consumer observables Zit ∈ RH , H ≥ J , with
support Z (Xt).

For clarity, we write random variables (all of which have t among their sub-
script indices) in uppercase and their realizations in lowercase. The variables

8Here we cite only a small representative handful of papers out of a selection that spans
many topics and many years. Recent development of commercial consumer-level data sets
suggests the potential for micro data to play an even larger role in the future.
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(Pt, Xt,Ξt) are common to all consumers in a given market.9 We distinguish
between Pt and Xt due to the particular interest in how demand responds to
prices and the typical focus on endogeneity of prices. However, we have not
yet made the standard assumption that Xt is exogenous—e.g., independent or
mean independent of the demand shocks Ξt. We will see below that identifi-
cation of demand elasticities and other key features of demand can often be
obtained without such an assumption (or additional instruments for Xt).10

Although Xt will typically include observable product characteristics (pos-
sibly including characteristics of the outside option), it may also include other
factors defining markets.11 For example, consumers might be partitioned into
“markets” based on a combination of geography, time, product availability,
and demographics (e.g., binned age or income) included in Xt. In contrast,
observables varying across consumers within a market are represented by Zit.
Key conditions, made precise below, are that consumer observables provide
variation of dimension at least J (hence H ≥ J), with J components of Zit

entering the model through an index structure. When H > J , the “extra” con-
sumer observables can be treated fully flexibly; thus, without further loss, we
henceforth assume H = J .12 We emphasize that although our requirements on
Zit permit the case in which each component Zijt exclusively affects the attrac-
tiveness of good j, we will not require this. Nor will we require independence
(full, conditional, or mean independence) between Zit and Ξt.

The choice environment of consumer i in market t is then represented by

Cit = (Zit, Pt, Xt,Ξt) .

Let C denote the support of Cit. A basic primitive characterizing consumer

9The assumption that all consumers in a market face the same prices and product char-
acteristics is standard and may influence how markets are defined in practice. This rules
out some forms of price discrimination.

10Alternatively, when instruments are available for endogenous components of Xt, our
results generalize immediately by expanding Pt to include these endogenous characteristics.

11 Xt could also include product fixed effects. Such fixed effects generally do not address
the endogeneity challenges central to identification of demand (see, e.g., Berry and Haile
(2021)). With additional assumptions, cross-market variation in the number of goods avail-
able could be valuable; e.g., data from markets with J available goods could be used to
predict outcomes in markets with more or fewer goods.

12For example, one may interpret all that follows as applying conditional on each value
of the “extra” consumer observables. Berry and Haile (2023) provide a more explicit and
slightly more flexible treatment.
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behavior in this setting is a distribution of decision rules for each cit ∈ C.13 As
usual, heterogeneity in decision rules (i.e., nondegeneracy of the distribution)
within a given choice environment may reflect a variety of factors, including
latent preference heterogeneity across consumers, shocks to individual prefer-
ences, latent variation in consideration sets, or stochastic elements of choice
(e.g., optimization error).14

2.1 Demand and Conditional Demand

The choice made by consumer i is represented by Qit = (Qi1t, . . . , QiJt), where
Qijt denotes the quantity (here, 0 or 1) of good j purchased. Given Cit, a dis-
tribution of decision rules is fully characterized by the conditional cumulative
joint distribution function FQ (q|Cit) = E [1 {Qit ≤ q} |Cit]. In the case of dis-
crete choice, this distribution can be represented without loss by the structural
choice probabilities

s (Cit) = (s1(Cit), . . . , sJ(Cit)) = E [Qit|Cit] . (1)

Given the measure of consumers in each choice environment, the mapping s

fully characterizes consumer demand. We will therefore consider identification
of the latent demand shocks and the demand mapping s on C.

However, it is useful to also consider identification of the conditional de-
mand functions

s̄ (Zit, Pt; t) ≡ s (Zit, Pt, xt, ξt)

on
C(xt, ξt) = supp (Zit, Pt) | {Xt = xt,Ξt = ξt}

for each market t. The function s̄(·; t) is simply the demand function s when
(Xt,Ξt) are fixed at the values (xt, ξt) realized in market t. Because Ξt is

13Under additional conditions a distribution of decision rules can be represented as the
result of utility maximization. See, e.g., Mas-Colell, Whinston, and Green (1995), Block
and Marschak (1960), Falmagne (1978), and McFadden (2005). We will not require such
conditions or consider a utility-based representation. A related issue is identification of
welfare effects. Standard results allow construction of valid measures of aggregate welfare
changes from a known demand system in the absence of income effects. Bhattacharya (2018)
provides such results for discrete choice settings when income effects are present.

14For many purposes, one need not take a stand on the interpretation of this random-
ness, since the economic questions of interest involve changes to the arguments of demand
functions, not to the functions themselves. This covers the canonical motivation for de-
mand estimation: quantifying responses to ceteris paribus price changes. However, for some
questions—e.g., those involving information interventions or requiring identification of car-
dinal utilities—the interpretation becomes important. See Barseghyan, Coughlin, Molinari,
and Teitelbaum (2021) for a recent contribution on this topic.
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unobserved and prices are fixed within each market, identification of s̄(·; t) is
nontrivial. However, this mapping fully characterizes the responses of demand
(at all values of Zit) to counterfactual ceteris paribus price variation, holding
Xt and Ξt fixed at their realized values in market t. Thus, knowledge of s̄(·; t)
for each market t suffices for many purposes motivating demand estimation in
practice.

Notably, s̄(·; t) fully determines the own- and cross-price demand elasticities
for all goods in market t. One implication is that s̄(·; t) is the feature of s needed
to discriminate between alternative models of firm competition (e.g., Berry
and Haile (2014), Backus, Conlon, and Sinkinson (2021), Duarte, Magnolfi,
Sølvsten, and Sullivan (2023)). And, given a model of supply, s̄(·; t) suffices
to identify firm markups and marginal costs, following Berry, Levinsohn, and
Pakes (1995) and Berry and Haile (2014); to decompose the sources of firms’
market power, as in Nevo (2001); to determine equilibrium outcomes under a
counterfactual tax, tariff, subsidy, or exchange rate (e.g., Anderson, de Palma,
and Kreider (2001), Nakamura and Zerom (2010), Decarolis, Polyakova, and
Ryan (2020)); or to determine equilibrium “unilateral effects” of a merger (e.g.,
Nevo (2000), Miller and Sheu (2021)). Furthermore, s̄(·; t) alone determines
the “diversion ratios” (e.g., Conlon and Mortimer (2021)) that often play a
central role in the practice of antitrust merger review.

Of course, because the functions s̄(·; t) are defined with fixed values of
(Xt,Ξt), they do not suffice for answering all questions—in particular, those
requiring knowledge of ceteris paribus effects of Xt on demand.15 However, by
avoiding the need to separate the effects of Xt and Ξt, identification of s̄(·; t) in
each market t can often be obtained without requiring exogeneity of Xt. This
can be important when exogeneity is in doubt and one lacks the additional
instruments that would allow treating endogenous elements of Xt as we treat
prices Pt below.

2.2 Core Assumptions

So far we have made three significant assumptions:

(i) latent market-level heterogeneity can be represented by a J-vector Ξt;
(ii) conditional on Xt, the support of Zit is the same in all markets; and
(iii) the consumer-level observables Zit have dimension (of at least) J .

The first is important but standard (when market-level unobservables are ac-

15In some cases, such effects may be of direct interest—e.g., to infer willingness to pay
for certain product features. In other cases, such effects are inputs to determination of
demand under counterfactual product offerings or entry. Thus, while knowledge of s̄(·; t) in
all markets suffices in a large fraction of applications, knowledge of s is required for others.
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knowledged). The second assumption seems mild for most applications,16 and
it can be relaxed at the cost of more cumbersome exposition.17

The third assumption is both important and restrictive. Although some
modern micro data sets can offer dozens or even hundreds of consumer-level
observables, others offer a much smaller set of consumer-level measures. Thus,
full satisfaction of this requirement will depend on the dimension of the choice
set and the richness of the micro data. We focus on J-dimensional Zit to
explore the the extent to which micro data can fully eliminate the need to in-
strument for J endogenous quantities in a flexible nonparametric model. The
Supplemental Appendix illustrates some of the ways this requirement on the
dimension of Zit can be relaxed. For example, we discuss semiparametric mod-
els in which a single binary consumer characteristic Zit and a single excluded
instrument for price can suffice.

We will also rely on Assumptions 1–5 below, where we let X and PX denote
the supports of Xt and (Pt, Xt), respectively. Assumptions 1–3 introduce an
index structure that serves a key element of our strategy for demonstrating the
gains from micro data: inferring variation across markets in the demand shock
vector Ξt using variation in the value of the vector Zit required to produce
particular choice probabilities.

Assumption 1 (Index). s (Cit) = σ (γ (Zit, Xt,Ξt) , Pt, Xt), where
γ (Zit, Xt,Ξt) = (γ1 (Zit, Xt,Ξt) , . . . , γJ (Zit, Xt,Ξt)) ∈ RJ and γj (Zit, Xt,Ξt) =
Γj (Zit, Xt) + Ξjt for all j.

Assumption 2 (Invertible Demand). For all (p, x) ∈ PX , σ(·, p, x) is injective
on the support of γ(Zit, x,Ξt).

Assumption 3 (Injective Index). For all (x, ξ) ∈ supp (Xt,Ξt), γ (·, x, ξ) is
injective on Z(x).

Assumption 1 requires that Zit and Ξt affect choices only through a J-
vector of indices in which prices are excluded and each Ξjt is exclusive to the
jth component, entering this component of the index in additively separable
form.18 This is an important nonparametric functional form restriction. A
key implication is a sense in which variation in Zit has comparable effects
across markets: a unit change in Γj (Zit, Xt) has the same effect on demand

16Note that the distribution of Zit over this support may vary freely across markets,
including in ways that depend on Ξt.

17For example, our results go through without this assumption if we instead let each Z(x)
be a nonempty set (assumed open and connected below) common to the support of Zit in
all markets for which Xt = x.

18We show in Berry and Haile (2023) that the separability requirement can be dropped
by strengthening other conditions.
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as a unit change in Ξjt.19 We link this structure (and the remaining core
assumptions below) to familiar specifications from the literature in section 3.
In the Supplemental Appendix we discuss a more general model permitting
the price of good j to enter the jth component of the index vector.

Assumption 2 requires that the choice probability function σ be “invertible”
with respect to the index vector—that, holding (Pt, Xt) fixed, distinct index
vectors map to distinct choice probabilities. Berry, Gandhi, and Haile (2013)
provide sufficient conditions for invertibility of a demand system, which are
natural here when each γj (Zit, Xt,Ξt) can be interpreted as a quality shifter
for good j.20Assumption 3 requires injectivity of the index function γ with
respect to the vector Zit. This generalizes common utility-based specifications
of demand while avoiding the common requirement that each Zijt affect the
utility of good j exclusively.

In addition to the index structure, we assume that both Zt and Ξt have
uncountable connected support. This allows transparent exploration of the
potential gains from micro data, using calculus and moment equalities. As-
sumption 5, in addition, rules out trivial cases in which conditioning on (Pt, Xt)
indirectly fixes Ξt as well. Such cases are ruled out by standard models of sup-
ply, where prices respond to continuous cost shifters or markup shifters (ob-
served or unobserved), allowing the same equilibrium price vector p to arise
under different realizations of Ξt.

Assumption 4 (Support). For all x ∈ X , Z(x) is open and connected.

Assumption 5 (Nondegeneracy). For each x ∈ X , there exists (possibly un-
known) p ∈ suppPt|{Xt = x} such that suppΞt|{(Pt = p,Xt = x)} is open
and connected.

Assumption 4’s requirement of continuous variation in Zit is important
to our arguments. Absent appropriate restrictions on other elements of the
model, it may not be surprising that continuous variation would be required for
nonparametric point identification. Indeed, below we will require continuously
distributed instruments for prices as well. In practice, of course, one may often
rely on at least some instruments or consumer-level observables with discrete
(even binary) support. As in other types of empirical models, in such cases
parametric forms used in estimation will typically fill the gaps left by the

19A sufficient condition is that this equivalence hold for the determination of Qit at the
individual consumer level. In typical linear random utility discrete choice models (see section
3) this would allow for a random coefficient on each index Γj (Zit, Xt) + Ξjt but would
otherwise rule out random coefficients on Ξjt or on terms involving Zit.

20Other general sufficient conditions for injectivity can be found in, e.g., Palais (1959),
Gale and Nikaido (1965), and Parthasarathy (1983).
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available variation. The Supplemental Appendix considers identification in an
example with discrete Zit.

2.3 A Useful Representation of the Index

We have thus far written the index vector

γ (Zit, Xt,Ξt) ≡ Γ (Zit, Xt) + Ξt

in a way that maximizes clarity about our core assumptions. To demonstrate
identification while allowing for endogenous Xt, it is more convenient to define

g (Zit, Xt) = Γ (Zit, Xt) + E [Ξt|Xt]

and
h (Xt,Ξt) = Ξt − E [Ξt|Xt] , (2)

so that the index can be rewritten as

γ (Zit, Xt,Ξt) = g (Zit, Xt) + h (Xt,Ξt) . (3)

Here we have simply let g (Zit, Xt) absorb the mean of Ξt conditional on
Xt, leaving the residualized structural error vector h (Xt,Ξt). Observe that

E [h (Xt,Ξt) |Xt] = 0 (4)

by construction.
With this notation, we have

s (Cit) = σ (g (Zit, Xt) + h (Xt,Ξt) , Pt, Xt) (5)

and
s̄ (Zit, Pt; t) = σ (g (Zit, xt) + h(xt, ξt), Pt, xt) (6)

We henceforth work with this representation of the demand and conditional
demand functions.

2.4 Technical Conditions

In parts (i) and (ii) of Assumption 6 below we assume smoothness conditions
permitting our applications of calculus and continuity arguments below. Parts
(iii) and (iv) strengthen the injectivity requirements of Assumptions 2 and 3
slightly by requiring that the Jacobian matrices ∂g(z, x)/∂z and ∂σ(γ, p, x)/∂γ
be nonsingular almost surely.

Assumption 6 (Technical Conditions). For all (p, x) ∈ PX , (i) g(·, x) is
uniformly continuous and continuously differentiable; (ii) σ (·, p, x) is contin-
uously differentiable; (iii) ∂g(z, x)/∂z is nonsingular a.s. on Z(x); and (iv)
∂σ(γ, p, x)/∂γ is nonsingular a.s. on supp γ(Zit, Xt,Ξt)|{(Pt, Xt) = (p, x)}.
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2.5 Normalization

The model requires two types of normalizations before the identification ques-
tion can be properly posed. The first reflects the fact that the latent de-
mand shocks have no natural location. Thus, we set E[Ξt] = 0 without loss.
The second reflects the fact that arbitrary injective transformations of the in-
dex vector γ (Zit, Xt,Ξt) can be reversed by appropriate modification of the
unknown function σ. For example, take arbitrary A(Xt) : X → RJ and
B(Xt) : X → RJ×J , with B(x) nonsingular at all x. By letting

γ̃ (Zit, Xt,Ξt) = A(Xt) +B(Xt)γ (Zit, Xt,Ξt) (7)
σ̃ (γ̃ (Zit, Xt,Ξt) , Pt, Xt) = σ

(
B(Xt)

−1 (γ̃ (Zit, Xt,Ξt)− A(Xt)) , Pt, Xt

)
(8)

one obtains a new representation of the same map from (Zit, Pt, Xt,Ξt) to
quantities demanded, the new one satisfying our assumptions whenever the
original does. We must choose a single representation of demand before ex-
ploring whether the observables allow identification.21

To do this, for each x ∈ X we take an arbitrary z0(x) ∈ Z(x) such that
∂s̄ (z0(x), pt; t) /∂z is nonsingular in some market t for which Xt = x, guar-

anteeing that
∂g(z0(x),x)

∂z
is nonsingular.22 We then select the representation of

demand in which
g
(
z0 (x) , x

)
= 0 (9)

and
∂g (z, x)

∂z

∣∣∣∣
z=z0(x)

= I, (10)

where I denotes the J-dimensional identity matrix. In the example above this
choice of normalization is equivalent to taking

B (x) =

[
∂g (z, x)

∂z

]−1
∣∣∣∣∣
z=z0(x)

and
A(x) = −B(x)g

(
z0(x), x

)
at each x, then dropping the tildes from the transformed model.

21Like location and scale normalizations of utility functions, our normalizations place
no restriction on the demand function s or the conditional demand functions s̄(·; t). In
practice, normalizations are often embedded in parametric functional forms and exclusivity
assumptions. See the Supplemental Appendix.

22By Assumption 6, almost all points in Z(x) will satisfy this condition; and
∂s̄
(
z0(x), pt; t

)
/∂z is observable in every market t for which Xt = x.
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3 Example
The literature includes many examples of parametric special cases of our
model. The canonical discrete choice demand model (e.g., Berry, Levinsohn,
and Pakes (2004)) is derived from a random utility specification like

uijt = xjtβijt − αitpjt + ξjt + ϵijt j = 1, . . . , J (11)
ui0t = ϵi0t,

where uijt is consumer i’s conditional indirect utility from good j in market
t. Here, consumer-level heterogeneity is reflected by the idiosyncratic taste
shocks ϵit = (ϵi0t, . . . , ϵiJt) (e.g., draws from a normal or type-1 extreme value
distribution) as well as the random coefficients αit and βijt ∈ RK .23 These
random coefficients are often specified as

αit = exp
(
α0 + αyyit + ανν

(0)
it

)
, (12)

β
(k)
ijt = β

(k)
0j +

L∑
ℓ=1

β
(k,ℓ)
zj ziℓt + β

(k)
νj ν

(k)
it k = 1, . . . , K, (13)

where each ziℓt represents one of L observable characteristic of consumer (or
household) i, yit represents consumer/household income—a consumer-level ob-
servable beyond those in zit,24 and each νit = (ν

(0)
it , . . . , ν

(K)
it ) is a random vec-

tor drawn from a pre-specified distribution. The preference shocks (νit, ϵit) are
assumed i.i.d. across consumers and markets.

With (12) and (13), we can rewrite (11) as

uijt = gj (zit, xt) + ξjt + µijt, (14)

where

gj (zit, xt) =
∑
k

x
(k)
jt

L∑
ℓ=1

β
(k,ℓ)
zj ziℓt (15)

µijt =
∑
k

x
(k)
jt

(
β
(k)
0j + β

(k)
νj ν

(k)
it

)
− exp

(
α0 + αyyit + ανν

(0)
it

)
pjt + ϵijt. (16)

23Random coefficients are popular in discrete choice models because they can allow de-
mand systems whose substitution patterns are more flexible along certain dimensions. We
focus directly on identification of a demand system with very flexible substitution patterns.
Section 5.1 provides additional discussion.

24Recall that our analysis suppresses such “extra” consumer observables but treats them
fully flexibly. Section S.1 of the Supplemental Appendix discusses a variation of our model
allowing prices to interact with the J-dimensional Zit itself.
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Observe that all effects of zit and ξt operate through indices

γj (zit, xt, ξt) = gj (zit, xt) + ξjt j = 1, . . . , J,

satisfying our Assumption 1. The injectivity of demand required by As-
sumption 2 can be confirmed following Berry (1994) under typical distribu-
tional assumptions, or Berry, Gandhi, and Haile (2013) under more general
conditions. Assumption 3—invertibility of the linear mapping g(zit, xt) =
(g1(zit, xt), . . . , gJ(zit, xt)) in a J-dimensional subvector of zit—clearly requires
L ≥ J . The additional conditions required for the assumption might then be
assumed directly or derived from other conditions.

This example connects our nonparametric model to a large number of
applications. Of course, our model generalizes the example substantially.
It does not require linear utility functions,25 parametric distributional as-
sumptions, or even a representation of demand through utility maximiza-
tion. Even within the linear random coefficients random utility discrete choice
paradigm, our model would allow the joint distribution of (νit, ϵit) to de-
pend on (g(zit, xt) + ξt, pt, xt). More generally, consumer heterogeneity in our
model is not limited to a finite vector of shocks entering with particular func-
tional forms: utilities could be specified as nonparametric random functions
of (g(zit, xt) + ξt, pt, xt).

Finally, observe that the example above lacks features sometimes relied
on in results showing identification of discrete choice models: aside from the
absence of individual characteristics that exclusively affect the utility from one
choice j, this model does not exhibit independence between the “error term”
(ξjt + µijt) in (14) and any of the observables zit, pt, xt.26

4 Identification
We consider identification of the latent shocks ξt, the demand system s(Cit),
and the conditional demand systems s̄(Zit, Pt; t). The observables comprise the
market index t, the variables (Qit, Zit, Pt, Xt), and a vector of instruments Wt

discussed below. As usual, to consider identification we treat the population
joint distribution of the observables as known. Loosely, we may view this as the
result of observing (Qit, Zit, Pt, Xt) for many markets t and many consumers i

25Thus, it would allow generalization of the nonparametric random utility model in Allen
and Rehbeck (2019) to incorporate market-level demand shocks, flexible heterogeneity in
tastes for product characteristics, and nonadditive product-level taste shocks.

26The variables (xjt, pjt, ξjt) directly enter the composite error ξjt+µijt. Furthermore, xjt

and pjt may be correlated with changes in the distribution of zit across markets, introducing
dependence between zit and µijt.
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in each market. These observables imply observability of choice probabilities
conditional on (Zit, Pt, Xt) in each market t. Of course, this implies observ-
ability of market-level choice probabilities (market shares) as well. We will
use the compact notation st(z) to denote the observed choice probability in
market t conditional on Zit = z.

We proceed in three steps. First, in section 4.1 we demonstrate identifi-
cation of the function g(·, x) at each x ∈ X . In section 4.2 we use this result
to link latent market-level variation in h(Xt,Ξt) to variation in the observed
value of Zit required to produce certain conditional choice probabilities in each
market. In particular, given instruments for prices, we show that the realized
values h(xt, ξt) can be pinned down in every market, making identification of
the conditional demand systems s̄(·; t) in each market straightforward. Finally,
in section 4.3 we show that s and each ξt are also identified when one adds
the usual assumption that Xt is exogenous. Thus, after the initial setup and
lemmas, the main results themselves follow relatively easily.

Before proceeding, we provide some key definitions and observations. For
(p, x, ξ) ∈ supp (Pt, Xt,Ξt) let

S (p, x, ξ) = σ (g (Z(x), x) + h(x, ξ), p, x) ,

and
S(p, x) = ∪ξ∈suppΞt|{Pt=p,Xt=x}S(p, x, ξ).

Thus, S (p, x, ξ) denotes the support of choice probabilities within any market
t for which Pt = p,Xt = x, and Ξt = ξ. S(p, x) denotes the support (within
and across markets) conditional on {Pt = p,Xt = x}.27

By Assumptions 2 and 3, for each s ∈ S (p, x, ξ) there is a unique z∗ ∈ Z(x)
such that σ (g (z∗, x) + h(x, ξ), p, x) = s. So for (p, x, ξ) ∈ supp (Pt, Xt,Ξt)
and s ∈ S (p, x, ξ), we define the function z∗ (s; p, x, ξ) implicitly by

σ
(
g
(
z∗ (s; p, x, ξ) , x

)
+ h(x, ξ), p, x

)
= s. (17)

We also define the compact notation

z∗t (s) ≡ z∗ (s; pt, xt, ξt) . (18)

These definitions lead to two observations that play key roles in what fol-
lows. First, in each market t the set S(pt, xt, ξt) and the values of z∗t (s) for

27 Because Z(x) is open, continuity and injectivity of σ with respect to the index vector
and of the index function with respect to Zit imply that S (p, x, ξ) (and, thus, S(p, x) as
well) is open. Continuity of σ(·) with respect to the index vector and continuity of g(·) with
respect to Zit imply (recalling Assumption 4) that S(p, x) is connected.
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all s ∈ S (pt, xt, ξt) are directly observed, even though the value of ξt is not.
Second, by the invertibility of σ (Assumption 2), we have

g (z∗ (s; p, x, ξ) , x) + h(x, ξ) = σ−1 (s; p, x) (19)

for all (p, x, ξ) ∈ supp (Pt, Xt,Ξt) and s ∈ S (p, x, ξ).

4.1 Initial Steps

Let || · || denote the Euclidean norm. A key implication of our nondegeneracy
condition (Assumption 5) follows from the definition (2): for each x ∈ X
there exist p ∈ suppPt|{Xt = x} and ϵ > 0 such that for any d ∈ RJ satisfying
||d|| < ϵ, suppΞt|{Pt = p,Xt = x} contains vectors ξ and ξ′ satisfying h(x, ξ)−
h(x, ξ′) = d. This is exploited to prove Lemma 1, which demonstrates how
local variation across markets in the latent Ξt will produce local variation in
observed values of z∗t (s) for those markets.

Lemma 1. Let Assumptions 1–6 hold. For each x ∈ X there exist p ∈
suppPt|{Xt = x} and ∆ > 0 such that for all z and z′ in Z(x) satisfying

||z′ − z|| < ∆, (20)

there exist a choice probability vector s and vectors ξ and ξ′ in suppΞt|{Pt =
p,Xt = x} such that z = z∗ (s; p, x, ξ) and z′ = z∗ (s; p, x, ξ′). Furthermore,
such (p,∆) are identified.

Proof. See Appendix B.

With this result in hand, Lemma 2 demonstrates that one can use equation
(19) to relate partial derivatives of g(z, x) at any point z to those at nearby
points z′ by examining the change in consumer characteristics required to
create a given change in the vector of choice probabilities.28

Lemma 2. Let Assumptions 1–6 hold. Then for every x ∈ X there exists a
known ∆ > 0 such that for almost all z and z′ in Z(x) satisfying (20), the

matrix
[
∂g(z,x)

∂z

]−1 [
∂g(z′,x)

∂z

]
is identified.

Proof. Given any x ∈ X , take a (known) (p,∆) as in Lemma 1. Consider
markets t and t′ in which (Pt, Xt) = (Pt′ , Xt′) = (p, x) but, for some choice
probability vector ŝ,

z = z∗t (ŝ) ̸= z′ = z∗t′ (ŝ) , (21)

28Abusing notation to simplify key expressions, below we write ∂g(z,x)
∂z to represent the

Jacobian matrix ∂g(ẑ,x)
∂ẑ

∣∣∣
ẑ=z

. Similarly, we write ∂g(z′,x)
∂z to represent ∂g(ẑ,x)

∂ẑ

∣∣∣
ẑ=z′

.
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revealing (recall (18)) that ξt ̸= ξt′ . Lemma 1 ensures that such t, t′, and ŝ
exist for all z and z′ in Z(x) satisfying (20). And although ξt and ξt′ are
latent, the identities of markets t and t′ satisfying (21) are observed, as are
the associated values of ŝ, z∗t (ŝ), and z∗t′(ŝ). Differentiating (19) with respect
to the choice probability vector within these two markets, we obtain

∂g (z, x)

∂z

∂z∗t (ŝ)

∂s
=

∂σ−1 (ŝ; p, x)

∂s
(22)

and
∂g (z′, x)

∂z

∂z∗t′ (ŝ)

∂s
=

∂σ−1 (ŝ; p, x)

∂s
. (23)

Thus, recalling Assumption 6, for almost all such (z, z′) we have[
∂g (z′, x)

∂z

]−1
∂g (z, x)

∂z
=

∂z∗t′ (ŝ)

∂s

[
∂z∗t (ŝ)

∂s

]−1

.

The matrices on the right-hand side are observed. □

This leads us to the main result of this section, obtained by connecting (at

each x) the matrix products
[
∂g(z,x)

∂z

]−1 [
∂g(z′,x)

∂z

]
identified in Lemma 2 to the

known value of
[
∂g(z,x)

∂z

]
at z = z0(x).

Lemma 3. Under Assumptions 1–6, g(·, x) is identified on Z(x) for all x ∈ X .

Proof. For ϵ > 0, let B (b, ϵ) denote an open ball in RJ of radius ϵ, centered
at a point b. Take any x ∈ X and associated ∆ > 0 as in Lemma 2. For each
vector of integers ι ∈ ZJ , define the set

Bι = Z(x) ∩ B
(
z0(x) +

ι∆

2J
,
∆

2

)
.

By construction, all z and z′ in any given set Bι satisfy (20). So by Lemma
2, the value of [∂g(z, x)/∂z]−1 [∂g(z′, x)/∂z] is known for almost all z and
z′ in every set Bι. Because ∪ι∈ZJBι forms an open cover of Z(x), given
any z ∈ Z(x) there exists a simple chain of open sets Bι in Z(x) link-
ing the point z0(x) to z (see, e.g., van Mill (2002, Lemma 1.5.21)). Thus,
[∂g(z, x)/∂z]−1 [∂g(z0(x), x)/∂z] is known for almost all z ∈ Z(x). With the
normalization (10) and continuity of ∂g(z, x)/∂z with respect to z, the result
then follows from the fundamental theorem of calculus for line integrals and
the boundary condition (9). □

The following corollary documents implications of Lemma 3 that play an
important role in the next steps of our argument.
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Corollary 1. Let Assumptions 1–6 hold. For all (p, x) ∈ PX ,
(i) ∂σ−1 (·; p, x)/∂s is identified on S (p, x); and
(ii) for all s0 ∈ S(p, x) and s1 ∈ S(p, x),

Ω(p, x, s1, s0) ≡ σ−1(s1; p, x)− σ−1(s0; p, x) (24)

is identified.

Proof. Take any (p, x) ∈ PX . For every market t in which (Pt, Xt) = (p, x),
(18) and (19) imply

∂g(z∗t (s), x)

∂z

∂z∗t (s)

∂s
=

∂σ−1(s; p, x)

∂s

for all s ∈ S(p, x, ξt). For all such s, ∂z∗t (s)
∂s

is directly observed and, by Lemma
3, ∂g(z∗t (s),x)

∂z
is known. Part (i) follows. Because S(p, x) is open and connected

(recall footnote 27), part (ii) follows from part (i) and the fundamental theorem
of calculus for line integrals. □

4.2 Identification of Conditional Demand

We demonstrate identification of the conditional demand functions s̄(·; t) under
the additional assumption that there exist instruments Wt for prices satisfying
the standard nonparametric IV conditions conditional on Xt.

Assumption 7 (Instruments for Prices).
(i) E [hj(Xt,Ξjt)|Xt,Wt] = E [hj(Xt,Ξjt)|Xt] almost surely for all j = 1, . . . , J ;
(ii) In the class of functions Ψ(Xt, Pt) with finite expectation,
E [Ψ (Xt, Pt) |Xt,Wt] = 0 almost surely implies Ψ(Xt, Pt) = 0 almost surely.

Part (i) of Assumption 7 is the exclusion restriction, requiring that varia-
tion in Wt not alter the mean of the latent h(Xt,Ξt) conditional on Xt. Recall
that E[h(Xt,Ξt)|Xt] = 0 by construction; thus part (i) implies

E [hj(Xt,Ξjt)|Xt,Wt] = 0 a.s. for all j. (25)

This is true regardless of whether Xt itself is exogenous. Of course, one must
be particularly cautious about satisfaction of part (i) when Xt is thought to be
endogenous. We discuss this further in section 5.3 and Appendix A. The rele-
vance requirement, part (ii), is a standard completeness condition. This is the
nonparametric analog of the rank condition required for identification of linear
regression models. For example, Newey and Powell (2003) have shown that
under mean independence (the analog of (25) here), completeness is necessary
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and sufficient for identification in separable nonparametric regression.29 The
following result demonstrates that the same instrumental variables conditions
suffice here to allow identification of hj(xt, ξjt) for all j and t.

Lemma 4. Under Assumptions 1–7, the scalar hj(xt, ξjt) is identified for all
j and t.

Proof. For each (p, x) ∈ PX , let s0(p, x) be an arbitrary point in S(p, x). For
each t, let z̃it be an arbitrary point in Z(xt). By (19), in every market t we
have

gj (z̃it, xt) = σ−1
j (st(z̃it); pt, xt)− hj(xt, ξjt) (26)

for each j = 1, . . . , J . Using (24), rewrite the jth equation as

Yjt = fj(xt, pt)− ejt (27)

where

Yjt ≡ gj (z̃it, xt)− Ωj

(
pt, xt, st (z̃it) , s

0 (pt, xt)
)
,

fj(xt, pt) ≡ σ−1
j

(
s0(pt, xt); pt, xt

)
,

ejt ≡ hj(xt, ξjt).

By Lemma 3 and Corollary 1, each Yjt on the LHS of (27) is known. Thus, (27)
takes the form of a standard separable nonparametric regression model with
regressors (Xt, Pt), an unknown regression function fj, and additive structural
errors Ejt (with realizations ejt). By (25), we have E[Ejt|Xt,Wt] = 0 almost
surely. So under the completeness condition (part (ii) of Assumption 7) iden-
tification of fj follows immediately from Proposition 2.1 in Newey and Powell
(2003). This implies identification of each ejt as well. □

Identification of the conditional demand functions s̄(·; t) now follows easily.

Theorem 1. Under Assumptions 1–7, the conditional demand system s̄(·; t)
is identified on C(xt, ξt) for all t.

Proof. Recall that

s̄(Zit, Pt; t) = s(Zit, Pt, xt, ξt)

= σ(g(Zit, xt) + h(xt, ξt), Pt, xt)

= E [Qit|Zit, Pt, xt, h(xt, ξt)] .

For each t, h(xt, ξt) is now known. Qit, Zit, Pt, Xt are observed. □

29See also, e.g., Florens and Rolin (1990), Chernozhukov and Hansen (2005), and Severini
and Tripathi (2006).
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4.3 Identification of Demand

As discussed already, knowledge of the conditional demand functions suffices
for a large fraction of the questions motivating demand estimation, but not
all. In particular, it is not sufficient to answer questions concerning effects of
Xt on demand or other counterfactual outcomes when Xt changes holding Ξt

fixed. Addressing such questions will require separating the impacts of Xt and
Ξt. This can be done by adding the standard assumption that Xt is exogenous.

Assumption 8 (Exogenous Xt). E[Ξt|Xt] = 0.

When Assumption 8 holds, the definition (2) implies

h(Xt,Ξt) = Ξt.

This has two important implications. First, when Assumption 8 is maintained,
the IV exclusion condition (part (i) of Assumption 7) requires instruments Wt

that are exogenous conditional on exogenous (rather than endogenous) Xt.
Second, Lemma 4 now implies that each realization ξt of the demand shock
vector is identified. Recalling that

s(Cit) = E [Qit|Zit, Pt, Xt,Ξt] ,

identification of s follows immediately from the facts that (Qit, Zit, Pt, Xt) are
observed and all realizations of Ξt are now known.

Theorem 2. Under Assumptions 1–8, ξt is identified for all t, and the demand
system s is identified on C.

Note that we have required excluded instruments only for prices. This
contrasts with the setting of market-level data in Berry and Haile (2014),
where instruments for quantities were also required for identification of de-
mand. This difference is one of the gains from the micro data, and is reflected
by the absence of choice probabilities (quantities) on the RHS of the “regres-
sion” equation (27)—something accomplished using the adjustment factors
Ωj(pt, xt, st(z̃it), s

0(pt, xt)) identified in Corollary 1.30

30In contrast to early drafts of this paper discussed in Berry and Haile (2016, 2021),
identification of these adjustment factors avoids any need to assume that the support of
Zit is sufficiently large to ensure existence of choice probability vectors that are common
to all markets with the same observables. Rather, the arbitrary s0(p, x) may be used in all
markets t for which Pt = p and Xt = x, regardless of whether s0(p, x) ∈ S(p, x, ξt). Note
that although the use of arbitrary s0 (p, x) and z̃it in the proof of Lemma 4 might suggest
overidentification in that step, this is not the case. Let any continuously differentiable
functions g (·, x) and z∗t (·) (for each t) be given. Then, by construction, any change in the
choice of z̃it merely adds and subtracts the same constant from the LHS of (27) in each
market t, leaving this regression equation unchanged. Similarly, any change in the choice of
s0 (p, x) merely adds the same function of (pt, xt) to each side of (27).
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5 Lessons for Applied Work
Although the study of identification is formally a theoretical exercise, a pri-
mary motivation is to provide guidance for the practice and evaluation of
applied work. Here we discuss some key messages.

5.1 The Incremental Value of Micro Data

The most important practical lesson from our results is that the marginal
value of micro data is high. The specific benefits of micro data concern some
of the most significant challenges to identification of demand when one has only
market-level data: (i) the need to instrument for all prices and quantities, and
(ii) the nonparametric functional form and exogeneity conditions that allow
some of these IV requirements—in particular, the proper excludability of BLP
instruments—to hold.

The gains from micro data reflect the fact that consumer-level observables
create within-market variation in consumers’ choice problems. Such variation
is similar in some ways to that which can be generated by instruments for
quantities. In particular, it can pin down key aspects of consumer substitu-
tion patterns. From (5), we see that ∂st(zit)

∂zit
= ∂σ

∂γ
∂g
∂zit

. Since ∂st(zit)
∂zit

is observed,
identification of g (which we demonstrated without instruments) implies iden-
tification of the derivatives of demand with respect to the index vector γ (and,
thus, with respect to the vector of demand shocks Ξt). In standard parametric
models like the example of section 3, these substitution patterns—and those
with respect to prices—are determined (conditional on observables) by the
joint distribution of the random coefficients and product-level taste shocks.
Our nonparametric model, of course, allows more flexible substitution pat-
terns, and our results show that micro data allows their identification without
any instruments—a stark contrast to the case of market-level data alone.

Critically, however, the reason micro-data variation is free from confound-
ing effects of demand shocks is not an assumption of exogeneity—indeed, Zit

was not assumed to be independent or mean independent of Ξt. Rather, this
follows from the fact that market-level demand shocks Ξt do not vary within
a market. This has a strong connection to the “within” identification of slope
parameters in panel data models with fixed effects.

Thus, researchers should prefer micro data and seek it out whenever pos-
sible. Collecting reliable micro data will sometimes be difficult, and in some
cases only limited forms of micro data may be available. But even when the
setting and assumptions permit use of BLP instruments—or when the mi-
cro data available are more limited than we have assumed here—variation
from micro data can be a powerful addition. This message is consistent, for
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example, with the findings in the empirical literature (e.g., Petrin (2002),
Berry, Levinsohn, and Pakes (2004)) that the addition of even limited forms
of individual-level data can result in much more precise estimates than those
obtained with market-level data alone.

5.2 The Necessity of Cross-Market Variation

Although within-market variation accounts for the advantages of micro data,
cross-market variation remains essential. The proof of Lemma 2, for example,
relied on variation in Ξt across markets in the key steps toward identification
of g and, thus, of the substitution patterns discussed in section 5.1. More
fundamentally, the demand system (5) depends on arguments (Xt, Pt,Ξt) that
have no variation within a market. Thus, without strong additional restric-
tions, data from a single market cannot reveal anything about the effects of
prices or product characteristics on demand.31

This observation serves as a caution. As a practical matter, a parametric
specification of demand may allow estimation using data from only one mar-
ket, exploiting a combination of functional form restrictions and cross-product
variation in prices and product characteristics.32 In some cases, as in the
classic work of McFadden, Talvitie, and Associates (1977), only a single mar-
ket is available for study. However, identification in such cases—indeed, the
ability to rule out any arbitrary model of how prices (and other product char-
acteristics) affect demand—will be possible only through additional a priori
restrictions that could be relaxed in a multi-market setting.

5.3 A Focus on Instruments

Given sufficiently rich micro data, our main requirement for identification is
a set of valid instruments for prices. Candidate instruments include most of
those typically relied upon in the case of market-level data: these include cost
shifters, proxies for cost shifters (e.g., “Hausman instruments”), and exogenous

31For example, with data from a single market τ , one could set Ξτ = 0 without loss,
assume that Xt has no effect on demand, and assume that demand follows the multinomial
logit model with money-metric mean utilities gj(zit) − pjt for each good j. One can then
fit the observed conditional choice probabilities sτ (ziτ ) in market τ perfectly by setting
g(ziτ ) = σ−1

MNL(sτ (ziτ ))+ pτ , where σ−1
MNL is the inverse choice probability function for the

multinomial logit. The fitted model’s implications regarding effects of Xt and Pt on de-
mand, of course, reflect only the a priori assumptions, and neither these nor other arbitrary
assumptions can be ruled out using data from a single market.

32 Absent additional restrictions on our nonparametric model, such within-market cross-
product variation does not contribute to identification of demand.
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shifters of market structure. Micro data can also make available a related cat-
egory of candidate instruments: market-level observables (e.g., average demo-
graphics) that alter equilibrium markups, the “Waldfogel instruments.”33 With
micro data, one can directly account for the impacts of individual-specific de-
mographics, so it can be reasonable to assume that market-level demographics
are properly excluded from the demand mapping s.

An important and subtle question is whether the required IV exclusion
condition (part (i) of Assumption 7) will hold when Xt is endogenous. In Ap-
pendix A we find that, depending on the instrument and model of endogeneity,
conditioning on endogenous Xt can (i) render otherwise-valid instruments for
prices invalid; (ii) render otherwise-invalid instruments valid; or (iii) have no
effect on instrument validity. In some cases where conditioning on endogenous
Xt causes a violation of the exclusion condition, the problem can be over-
come through natural timing assumptions. While encouraging, this analysis
reveals that one must carefully examine the exclusion condition when Xt is
endogenous. As Appendix A illustrates, causal graphs offer a tool for such
examination that is simultaneously formal, transparent, and robust.

Absent from the discussion above are the BLP instruments. The charac-
teristics X−jt of goods competing with good j have direct effects on demand
for good j and (in standard supply models) on good j’s markup. The BLP
instruments are thus relevant shifters of prices, and in our micro data setting
they are not needed as exogenous shifters of quantities. However, the exclud-
ability of X−jt requires not only their exogeneity but also a restriction on the
way they enter demand (Berry and Haile (2014, 2021)). The Supplemental
Appendix shows how adding such restrictions to our model can allow the use
of BLP instruments for prices.

5.4 What Does Not Follow

Nonparametric identification results demonstrate a particular sense in which
parametric assumptions are not essential. But this does not mean that para-
metric (or other) assumptions relied on in practice can be ignored. Functional
form restrictions can constrain the answers to key questions, and empirical
research involving demand estimation should continue to explore sensitivity
to functional form choices. Likewise, it remains important to explore new
(parametric, semiparametric, or nonparametric) estimation approaches. Our
nonparametric identification results ensure that such explorations are possible
and may even suggest new estimation strategies.

33See Waldfogel (2003) as well as Gentzkow and Shapiro (2010), Fan (2013), and Li,
Hartmann, and Amano (2020).
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We also emphasize that our sufficient conditions for nonparametric identi-
fication should not be viewed as necessary conditions for demand estimation
in practice. Rather, they should guide our thinking about the strength of the
available data and empirical results. Nonparametric identification of economic
models (even regression models) relies on assumptions—index assumptions,
separability assumptions, completeness conditions, support conditions, mono-
tonicity conditions, or other shape restrictions—that will often (perhaps typ-
ically) fall short of full satisfaction in practice. Conditions for nonparametric
identification are not a hurdle but an ideal—a point of reference that can guide
our quest for and aid our assessment of the best available empirical evidence.
With large choice sets, for example, it will often be difficult to fully satisfy our
requirements of J excluded instruments for prices and J-dimensional consumer
observables. The robustness analysis of the Supplemental Appendix is aimed
to provide some insight about the trade-offs between these requirements and
additional structure often employed in practice.

6 Conclusion
Since Berry, Levinsohn, and Pakes (1995), there has been an explosion of in-
terest in empirical demand models that incorporate both flexible substitution
patterns and explicit treatment of the demand shocks that must be accounted
for to pin down policy-relevant features of demand. Understandably, this de-
velopment has been accompanied by questions about identification of these
models. Our results offer a reassurance that identification can be obtained
from traditional sources of quasi-experimental variation in the form of instru-
mental variables and panel-style within-market variation. This reassurance is
particularly important because of the wide relevance of these models to eco-
nomic questions and the special identification challenges arising in the case of
demand (see Berry and Haile (2021)).

Furthermore, identification of these models is not fragile. It does not rely
on special regressors or “identification-at-infinity” arguments; it is not limited
to particular settings (e.g., random utility discrete choice); one can substitute
one type of variation for another (e.g., replacing instruments for quantities
with micro-data variation), depending on the type of data available; and one
can relax many key conditions by strengthening others. Thus, although this is
a case where identification results come well after an extensive empirical litera-
ture has already developed, the nonparametric foundation for this literature is
strong. Of course, not all applications will offer the combinations of rich micro
data and instrumental variables permitting nonparametric identification. But
even when such data limitations lead to greater reliance on functional form
restrictions, our results shed light on the roles such assumptions will play.
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Appendices
A Price Instruments When Xt is Endogenous
In section 5.3 we discussed several categories of instruments Wt commonly
relied upon to provide exogenous variation in prices. Here we explore the
question of when these instruments remain properly excluded conditional on
observables Xt that are not (mean) independent of Ξt. Such instruments are
needed for Theorem 1 to apply when Theorem 2 does not, allowing identifica-
tion of conditional demand without exogeneity of Xt (or instruments for Xt).
Unconditional independence is not sufficient (or necessary) for conditional in-
dependence. Indeed, in other contexts (e.g., linear regression) it is well known
that conditioning on an endogenous “control” variable can lead to violation of
independence conditions required for identification. In what follows we sup-
press the market subscripts t on the random variables Xt, Pt,Wt,Ξt, etc.

Our discussion will utilize graphical causal models, with the d-separation
theorem providing the key criterion for assessing the independence between W
and Ξ conditional on X.34 Our use of these tools is elementary, and a graphical
approach is not essential—causal graphs represent information implied by a
fully specified economic model, standard change-of-variables formulas, and
Bayes’ rule. However, the graphical approach allows transparent treatment
of many possible economic examples inducing a smaller number of canonical
dependence structures. It also can be highly clarifying when one ventures
beyond the simplest cases. Following the literature on graphical causal models,
we focus on full conditional independence,

W |= Ξ |X, (A.1)

which implies the conditional mean independence required by Theorem 1.
We first discuss several causal graphs (and motivating economic examples)

that “work”—i.e., that imply (A.1). We then discuss the main type of structure
that does not work—i.e., where (A.1) fails despite unconditional independence
between W and Ξ. We will see that each type of instrument discussed in section
5.3 can remain valid under several models of endogenous X. Each type can
also fail—in particular, when firms choose X in ways that depend on both W
and Ξ (or their ancestors). However, in many of these situations, a natural
timing assumption can yield a new set of valid instruments for prices.

34See, e.g., Pearl (2009) and Pearl, Glymour, and Jewell (2016), including references
therein. Throughout we maintain the standard assumption that nodes in a causal directed
acylic graph are independent of their nondescendants conditional on their parents.

25



A.1 Graphs that Work

A.1.1 Fully Exogenous Instruments

The simplest cases arise when the instruments W satisfy

W |= (X,Ξ). (A.2)

The conditional independence condition (A.1) is then immediate, regardless of
any dependence between X and Ξ. Although formal analysis is unnecessary
in this case, it is also easily illustrated to build toward less obvious cases.

For example, suppose X is chosen by firms with knowledge of Ξ, so that
X is endogenous in the same sense that prices are. Given (A.2), one obtains
the causal graph shown in Figure 1.35 The conditional independence condition
(A.1) then can also be seen to follow immediately by the d-separation criterion.
We would reach the same conclusion if the direction of causation between Ξ and
X is reversed—e.g., if X is chosen without knowledge of Ξ but the distribution
of Ξ changes with the choice of X. Taking the classic example of demand for
automobiles, a manufacturer’s choice to offer a fuel efficient hybrid sedan may
imply a very different set of relevant unobserved characteristics than had a
pickup truck or luxury SUV been offered instead.36

Figure 1

Ξ X W

P

Most of the instrument types discussed in section 5.3 can satisfy (A.2).
For example, W could represent exogenous (independent of Ξ) cost shifters
such as input price shocks, realized after X is chosen and not affected by X.
These might be shocks to import tariffs; shipping costs; retailer costs (e.g.,
rents, wages); demand shifters in other markets served by the same firms (if
they face upward sloping marginal costs); or prices of manufacturing inputs.
One can also obtain this structure when W represents exogenous shifters of
markups. Mergers (full or partial) that are independent of Ξ and leave product

35We assume throughout that prices and quantities are not among the ancestors of
(X,W,Ξ). This is implied by standard assumptions that consumers take X and Ξ as given,
that W does not respond to prices or quantities, and that prices are chosen after X.

36A similar structure is obtained when dependence between Ξ and X reflects a common
cause.
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offerings unchanged offer one possibility. Another is cross-market variation
in the distribution FZ(·|t) (or other aggregate demographic measure at the
market or regional level), as long as this variation is independent of Ξ (as
required generally for the validity of Waldfogel instruments) and X.

A.1.2 Instruments Caused by X

Independence between X and W is not required. For example, consider the
case in which X is chosen with knowledge of Ξ and the choice of X affects
W . We then obtain a causal graph in Figure 2, where (A.1) is again easily
confirmed by the d-separation criterion. This causal structure allows addi-
tional examples of cost shifters beyond those discussed above. For example,
suppose X represents product characteristics affecting the level of labor skill
(or quality of another input) required in production, while W is the producer’s
average wage. Alternatively, if producers have market power in input markets,
input prices W would be affected by firms’ choices of product characteristics
X. Models in which the the direction of causation between X and Ξ in Figure
2 reverses will lead to the same conclusions.

Figure 2

Ξ X W

P

A.1.3 X Caused by Instruments

In some cases, the conditional independence condition (A.1) can hold even
when X is affected by W . Consider the causal graph in Figure 3, where (A.1)
is easily confirmed by d-separation. As an example motivating this structure,
suppose W is a product-level cost of producing a product feature measured
by X, X affects the nature of the unobservables Ξ, and X is chosen with
knowledge of W but not Ξ.
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Figure 3

Ξ X W

P

A.1.4 Hausman Instruments

When X is not independent of Ξ, Hausman instruments generally cannot yield
the trivial case in which (A.2) holds. This is because prices set by a firm in
some “other” market depend on the product characteristics in that market,
and the firm’s product characteristics are typically (highly) correlated across
markets. Nonetheless, Hausman instruments can remain valid in some cases.
Figure 4 illustrates one such case. Here L represents latent marginal cost
shifters. We let X−t and Ξ−t represent the non-price observables and demand
shocks of “other markets,” both of which (along with L) affect the Hausman
instruments W (prices in those markets).37 The absence of an edge linking
Ξ and Ξ−t reflects an essential assumption justifying Hausman instruments in
general (i.e., even when X is exogenous), as does the absence of an edge directly
linking L and Ξ. Here W and Ξ are not independent. But the conditional
independence condition (A.1) is satisfied.

Figure 4

LXΞ X−t Ξ−t

P W

The causal structure of Figure 4 is consistent with a fully specified model
in which X is chosen in each market with knowledge of the latent cost shocks
but before Ξ is realized. The direction of causality between X and L (and
similarly between X−t and L) is not important to this conclusion. However,
as demonstrated in the following section, the direction of causality between Ξ
and X is typically critical in the case of Hausman instruments.

37Following standard convention, we use a dashed bidirectional edge to represent depen-
dence between X and X−t arising from unmodeled common causes.
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A.2 Graphs that Don’t Work: X is a Collider

The conditional independence condition (A.1) fails when both W and Ξ affect
X. This is illustrated in Figure 5. Here X is a collider in the (undirected)
path between W and Ξ. Thus, although Ξ and W are independent, (A.1) fails.

Figure 5

Ξ X W

P

This structure arises when firms’ choices of X depend on both W and Ξ,
as will be typical if both Ξ and W are known by firms when choosing X. An
example is when W is a cost shifter affecting firms’ choices of X, the latter also
chosen with knowledge of Ξ. Another example is when W is a market-level
demographic measure or market structure measure (e.g., product ownership
matrix) that, along with Ξ, influences firms’ choices of X.38

As suggested already, we can also obtain this type of structure with Haus-
man instruments. Figure 6 illustrates. This graph represents models in which
prices and product characteristics X are chosen with knowledge of the demand
shocks Ξ and the latent cost shifters L. Here, X is a collider on an unblocked
path between Ξ and W .

Figure 6

LXΞ X−t Ξ−t

P W

Thus, just as there are cases in which each type of instrument discussed
in section 5.3 remains valid when conditioning on endogenous characteristics
X, there are other important cases in which (A.1) will fail. In such situations,
identification will require different instruments for prices. In many cases such

38A similar structure arises if the dependence between Ξ and X (or X and W ) reflects a
latent common cause.
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instruments can be constructed under natural timing assumptions. This is a
topic we take up in the final section of this appendix.39

A.3 Avoiding Colliders: Sequential Timing

The previous section describes a class of situations in which candidate instru-
ments that would be properly excluded unconditional on X would fail to be
properly excluded conditional on X. A leading case is that of cost shifters
(e.g., input prices) that, along with Ξ (or its ancestors), partially determine
firms’ choices of product characteristics X. In such cases one may be able
to obtain valid instruments by exploiting the (typical) sequential timing of a
firm’s decisions.

For example, physical characteristics of new automobiles sold in year τ
will reflect design choices made well in advance—in particular, before the in-
put costs for year-τ production are fully known. Pricing in year τ , on the
other hand, will typically take place after those costs are known. Such timing
is common to many markets. And, as in other contexts, temporal separation
of observable choices can offer an identification strategy.40 Here, for exam-
ple, even if product characteristics are chosen in response to demand shocks
and expected input costs, current-period innovations to input costs can offer
candidate instruments for prices.

To illustrate, we introduce a time superscript τ to all random variables.
Let M τ denote a vector of period-τ input prices and suppose M τ follows

M τ = Φ(M τ−1) +W τ , (A.3)

where Φ is a possibly unknown function and W τ |= (Ξτ , Xτ ,M τ−1). Given
observability of (M τ ,M τ−1) in all markets, each vector of period-τ innovations
W τ is identified. Now suppose that Xτ is chosen by firms in period τ − 1,
whereas prices for period τ are chosen in period τ . The causal graph in Figure
7 illustrates key features of such a model.41

Here endogeneity of Xτ reflects its selection with knowledge of Ξτ−1, the
latter correlated with Ξτ . Neither the contemporaneous cost shifters M τ nor
the lagged cost shifters M τ−1 can serve as instruments for prices conditional on
Xτ : Xτ would be a collider, as in the previous section. However, the period-
τ innovation W τ can serve as the instrument. Because W τ alters period-

39We also note that when X is a collider, W provides a candidate instrument for X.
40Familiar examples in IO include strategies used by Olley and Pakes (1996), Ackerberg,

Caves, and Frazer (2015), and others in the literature on estimation of production functions.
41The presence (or direction) of an edge from Xτ to Ξτ is not important to the argument.

Likewise, although we show the case in which Ξτ−1 is a cause of Ξτ , the same conclusion is
reached if dependence between Ξτ−1 and Ξτ reflects unmodeled common causes.
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Figure 7

Ξτ−1

Ξτ

M τ−1

Xτ

W τ

M τ

P τ

τ marginal cost, it is relevant for the determination of P τ , conditional on
Xτ . And, by the d-separation criterion, we see that W τ is independent of
Ξτ conditional on Xτ . Indeed, W τ here is an example of a “fully exogenous
instrument,” as discussed in section A.1.1. Ultimately, the innovation W τ is
simply a cost shifter that is independent of all else. The important insight,
however, is that natural timing assumptions can allow such fully independent
cost shifters to be constructed from measures like input prices that themselves
are not independent of Ξτ conditional on Xτ . Similar arguments can allow
construction of valid instruments from observed markup shifters (e.g., market-
level demographics) whose lagged values affect firms’ choices of X. One may
simply reinterpret M τ above as a period-τ markup shifter.

B Proof of Lemma 1
Fix a value of x ∈ X . By Assumption 5 and the definition (2), there exist
p ∈ suppPt|{Xt = x} and ϵ > 0 such that for any z and z′ in Z(x) for which

||g (z′, x)− g (z, x)|| < ϵ, (B.1)

there exist ξ and ξ′ in suppΞt|{Pt = p,Xt = x} such that

h(x, ξ)− h(x, ξ′) = g (z′, x)− g (z, x) ,

i.e., γ(z′, x, ξ′) = γ(z, x, ξ). Taking

s = σ (γ(z′, x, ξ′), p, x) = σ (γ(z, x, ξ), p, x) ,

the definition (17) implies that

z = z∗ (s; p, x, ξ) and z′ = z∗ (s; p, x, ξ′) .
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By uniform continuity of g(·, x), there exists ∆ > 0 such that (B.1) holds
whenever

||z′ − z|| < ∆. (B.2)

To see that all such (p,∆) are identified, recall (18) and observe that (p,∆)
meet the requirement if and only if for all z and z′ in Z(x) that satisfy (B.2),
there exist a choice probability vector s and markets t and t′ such that

z = z∗t (s) and z′ = z∗t′ (s) .

For any candidate (p,∆), satisfaction of (B.2) is observable, as are the values of
z∗τ (s) for all s ∈ S(p, x, ξτ ) in every market τ such that (Pτ , Xτ ) = (p, x).
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Supplemental Appendix:
Extensions, Variations, and Robustness

In this Appendix we explore variations on our baseline model and associated
identification conditions. We show that identification is robust in the sense
that a relaxation of one condition assumed in the text can often be accom-
modated by strengthening another. An understanding of such trade-offs can
be helpful to both producers and consumers of research relying on demand
estimates. Although a full exploration of these trade-offs describes an en-
tire research agenda, we illustrate some possibilities that relax key restrictions
of our model, allow demand systems outside discrete choice settings, enlarge
the set of potential instruments, reduce the number of required instruments,
eliminate the need for continuous consumer-level observables, or reduce the
required dimension of those observables. For simplicity, we focus here on the
traditional case in which Xt is exogenous, recalling that in this case we have
h(Xt,Ξt) = Ξt.

S.1 Prices in the Index

In the text we excluded prices from the index vector γ (Zit, Xt,Ξt). That did
not rule out interactions between prices and individual-specific measures (e.g.,
income), but required that such measures be “extra” consumer-level observ-
ables beyond those in the J-vector Zit. That requirement can be relaxed. A
full investigation of identification in models allowing interactions between Zit

and Pt is beyond the scope of this project. However, here we discuss one class
of fully nonparametric models permitting such interactions, demonstrating one
direction in which our results can be extended.

S.1.1 Model and Normalizations

Suppose demand takes the form

σ (γ (Zit, Pt, Xt,Ξt) , Pt, Xt) , (S.3)

where, for each j = 1, . . . , J ,

γj (Zit, Pt, Xt,Ξt) = gj (Zit, Pjt, Xt) + Ξjt,

gj (Zit, Pjt, Xt) = ḡj (Zit, Xt) + g̃j(Z̃it, Pjt, Xt), (S.4)
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and
Z̃it ≡ (Zi2t, . . . , ZiJt) .

This specification imposes two restrictions on an otherwise fully-flexible index
function γ (Zit, Pt, Xt,Ξt).1 First, the price of good j affects only the index
γj (Zit, Pt, Xt,Ξt) associated with good j. This is a natural restriction implied
by standard specifications (see, e.g., section 3). Second, at least one element
of Zit is excluded from interacting with prices. This is an important restriction
but also standard in practice. The key implication, exploited below, is that
∂g(z,p)
∂z1

does not vary with p.
Given the conditions in the text, identification in this model can be ob-

tained under additional verifiable conditions. Here we sketch the argument.
With exogenous Xt we can condition on Xt and drop it from the notation.2

This model requires a slightly different set of normalizations from those
used in the text. Let z0 denote an arbitrary point in Z for which ∂st(z

0)/∂z
is nonsingular, and let z̃0 = (z02 , . . . , z

0
J). Without loss of generality, for each

j = 1, . . . , j we set

E [Ξjt] = 0 (S.5)
g̃j
(
z̃0, pjt

)
= 0 ∀pjt (S.6)

ḡj
(
z0
)

= 0 (S.7)
∂ḡj (z

0)

∂z1
= 1. (S.8)

Equation (S.5) normalizes the location of Ξt, as in the text. The need for (S.6)
reflects the fact that each price Pjt already appears in unrestricted form in
the function σ. The role of prices in the index vector is to allow variation in
price responses across consumers with different values of Z̃it. Equation (S.6)
defines z̃0 as the (arbitrary) baseline value of Z̃it around which such variation
is defined.3 Given (S.5) and (S.6), (S.7) normalizes the location of each index
γj, while (S.8) normalizes its scale (see the related discussion in the text).

1With no restriction on γ (Zit, Pt, Xt,Ξt), (S.3) would impose no restriction on demand
as function of (Zit, Pt, Xt,Ξt), and there would be no role for the function σ in (S.3).

2Conditioning on Xt treats it fully flexibly, as the argument presented can be applied at
each value of Xt.

3More formally, for any demand system σ (γ (Zit, Pt,Ξt) , Pt) and any functions
κj (Pjt) for each j, one can can define an equivalent representation of this demand as
σ̂ (γ̂ (Zit, Pt,Ξt) , Pt), where γ̂j (Zit, Pjt,Ξjt) ≡ γj (Zit, Pjt,Ξjt) − κj (Pjt) and σ̂ (γ̂, Pt)
≡ σ (γ̂ + κ (Pt) , Pt). We select the representation with κj (Pjt) = g̃j

(
z̃0it, Pjt

)
for all j.
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S.1.2 Identification: Sketch

Following the arguments in Lemmas 1–3 in the text, one can show that for
every price p and any z′ ∈ Z the value of

V
(
z′, z0, p

)
≡
(
∂g(z0, p)

∂z

)−1(
∂g(z′, p)

∂z

)
(S.9)

is identified, although the two matrices on the RHS are unknown. Thus,
(S.9) provides a system of J2 equations in the 2J2 elements of these matrices.
Rewrite this system as

∂g(z0, p)

∂z
V (z′, z0, p) =

∂g(z′, p)

∂z
. (S.10)

These J2 equations break naturally into J groups, each with form

∂gj(z
0, p)

∂z︸ ︷︷ ︸
1×J

V (z′, z0, p)︸ ︷︷ ︸
J×J

=
∂gj(z

′, p)

∂z︸ ︷︷ ︸
1×J

. (S.11)

Take any j ∈ {1, . . . , J}. A key observation is that one obtains a new
system of J equations of the form (S.11) at every new price vector. By choos-
ing prices carefully, this can provide new equations without new unknowns.
Starting from an arbitrary price vector p and (S.11), any price vector pj ̸= p
for which pjj = pj yields

∂gj(z
0, pj)

∂z
V (z′, z0, pj) =

∂gj(z
′, pj)

∂z
. (S.12)

Because gj depends on the price vector only through pj, we have ∂gj(z
0,pj)

∂z
=

∂gj(z
0,p)

∂z
and ∂gj(z

′,pj)
∂z

=
∂gj(z

′,p)
∂z

. So we may rewrite (S.12) as

∂gj(z
0, p)

∂z
V (z′, z0, pj) =

∂gj(z
′, p)

∂z
. (S.13)

Subtracting (S.13) from (S.11), we obtain

∂gj(z
0, p)

∂z
Λ
(
z′, z0, p, pj

)
= 0 (S.14)

where
Λ
(
z′, z0, p, pj

)
≡ V (z′, z0, p)− V (z′, z0, pj). (S.15)

Equation (S.14) is a homogeneous system of J linear equations in the J
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components of ∂gj(z
0,p)

∂z
. One of these elements is already known: by (S.4) and

(S.8),
∂gj(z0,p)

∂z1
= 1. One can solve (S.14) for the remaining elements under the

following condition on Λ (z′, z0, p, pj) .

Condition 1. For some k ∈ {1, . . . , J}, the submatrix of Λ (z′, z0, p, pj) ob-
tained by dropping row j and column k is full rank.

Example 1. Consider the case of J = 2 and j = 1. Letting djk = ∂gj(z
0, p)/∂zk,

(S.14) takes the form (recalling the normalization d11 = 1)

[
1 d12

] [Λ11 Λ12

Λ21 Λ22

]
= 0,

which we may rewrite as

Λ11 + d12Λ21 = 0

Λ12 + d12Λ22 = 0.

Either of these equations could be used to solve for the unknown d12, although
this requires that at least one of Λ12 and Λ22 be nonzero (Condition 1). If
Λ22 ̸= 0, for example, then d12 = −Λ12

Λ22
.

Repeating the argument above for each j identifies the matrix ∂g(z0,p)
∂z

.
Plugging this into (S.10) (and recalling that V (z′, z0, p) is known) then allows
identification of ∂g(z′,p)

∂z
at every z′. Since the normalizations (S.6) and (S.7)

imply the boundary condition g(z0, p) = 0, we can integrate ∂g(z,p)
∂z

from this
point to identify g(z, p) at all z. Repeating the entire argument at each p then
identifies the function g. With g known, the arguments in the text (starting
from Corollary 1) can be applied directly to show identification of demand.

Thus, our identification results extend when, in addition to the conditions
in the text, for every price vector p and each j = 1, . . . , J , there exists a pair
(z′, pj) with pjj = pj and for which Condition 1 is satisfied. Because Pt is
observed and Condition 1 is a property of identified objects, this requirement
is verifiable.4 Condition 1 requires that the price vector alter the derivative
matrix ∂g(z,p)

∂z
, and differentially so at different prices p. This requires nonlin-

earity: it will fail, for example if g is everywhere linear in z at each p. How-
ever, one can confirm numerically that that Condition 1 holds in nonlinear
examples—e.g., in specifications following Berry, Levinsohn, and Pakes (1995,
2004). An interesting question is whether there are useful sufficient conditions
for Condition 1. That is a topic we leave to future work.

4See Berry and Haile (2018) for a formal definition of verifiability.
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S.2 Strengthening the Index Structure

The model used by Berry and Haile (2014) to study identification with market-
level data restricted the way some elements of Xt enter. Partitioning Xt as
(X

(1)
t , X

(2)
t ), where X

(1)
t =

(
X

(1)
1t , . . . , X

(1)
Jt

)
∈ RJ , they assumed that each

X
(1)
jt affects demand only through the jth element of the index vector. This

structure is common in specifications used in practice, and adding it here can
allow the use of BLP instruments for prices.5

To illustrate, suppose demand takes the form

s (Zit, Pt, Xt,Ξt) = σ
(
γ (Zit, Xt,Ξt) , Pt, X

(2)
t

)
, (S.16)

where for each j = 1, . . . , J

γj (Zit, Xt,Ξt) = gj(Zijt, X
(2)
t ) + ηj(X

(1)
jt , X

(2)
t ) + Ξjt, (S.17)

with ∂gj(z, x
(2))/∂zj > 0 for all (z, x(2)). Compared to the model in the text,

this introduces the exclusivity restriction on each X
(1)
jt , associates each Zijt

exclusively with the jth element of the index as well, and imposes separability
between Zijt and X

(1)
jt within the index.6 Many specifications in the literature

satisfy these requirements, typically with additional restrictions such as linear
substitution between Zijt and X

(1)
jt .

For the remainder of this section we condition on X
(2)
t (treating it fully

flexibly), suppress it from the notation, and let Xt represent X
(1)
t . For each

p ∈ suppPt, define

S(p) =
⋃

x∈suppXt|{Pt=p}

S(p, x)

S(p) =
⋂

x∈suppXt|{Pt=p}

S(p, x)

Z =
⋂
x∈X

Z(x).

We assume that Z is nonempty, as is S(p) for all p ∈ suppPt. Nonempty S(p)
requires that there exist s(p) ∈ S(p) such that at each x ∈ suppXt|{Pt = p}

5As suggested in section 5.3, the key issue is proper excludability of these instruments,
not their relevance.

6Exclusivity of X(1)
jt to the index γj is essential to the point we illustrate here, and this

is most natural when exclusivity of each Zijt differentiates the elements of the index vector.
The assumed separability simplifies the analysis.
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there is a combination of Zit and Ξt in their support conditional on {Pt =
p,Xt = x} that will map to the choice probability s(p). Nonempty Z requires
that there exist at least one value of Zit that is present in all markets.

With this more restrictive model we must revisit the necessary normal-
izations. First, because adding a constant κj to gj and subtracting the same
constant from ηj would leave the demand function unchanged, we take an
arbitrary x0 ∈ suppXt and set

ηj(x
0
j) = 0 ∀j (S.18)

without loss. Even with (S.18) (and our maintained E[Ξt] = 0), it remains
true that linear transformations of each index function γj could be offset by an
appropriate adjustment to the function σ, yielding multiple representations of
the same demand system (recall the related observation in section 2.5). Thus,
without loss, we normalize the location and scale of each index by taking an

arbitrary z0 ∈ Z and setting gj
(
z0j
)
= 0 and

∂gj(z0j )
∂zj

= 1 for all j.
The arguments in Lemmas 1–3 will now demonstrate identification of each

function gj. Likewise, for each price vector p and arbitrary s0 and s1 in S(p),
the arguments in Corollary 1 imply identification of

Ω(s1, s0, p) ≡ σ−1(s1; p)− σ−1(s0; p).

Taking an arbitrary z̃it ∈ Z(xt) for each market t, the inverted demand system
(cf. equation (19)) in each market takes the form

gj (z̃ijt) + ηj (xjt) + ξjt = σ−1
j (st(z̃it); pt) j = 1, . . . , J.

Taking an arbitrary s0(p) ∈ S(p) at each price vector p, we can rewrite the
jth equation as

gj (z̃ijt)− Ω(st(z̃it), s
0(pt), pt) = −ηj (xjt) + σ−1

j

(
s0(pt); pt

)
− ξjt. (S.19)

Because the LHS is known, this takes the form of a nonparametric regression
equation with RHS variables xjt and pt. In this equation x−jt is excluded,
offering J − 1 potential instruments for the endogenous prices pt. Thus, one
additional instrument—e.g., a scalar market-level cost shifter or Waldfogel
instrument—could yield enough instruments to obtain identification of the
unknown RHS functions and the “residuals” ξjt. Once these demand shocks
are identified, identification of demand follows immediately.

Many variations on this structure are possible. For example, as in many
empirical specifications, one might assume that pjt enters demand only through
the jth index. Strengthening the assumption of nonempty S(p) to require
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nonempty
⋂

(p,x)∈PX S(p, x), this can lead to a regression equation (the analog
of (S.19)) of the form

gj (z̃ijt)− Ω(st(z̃it), s
0) = −ηj (xjt, pjt) + σ−1

j

(
s0
)
− ξjt,

where s0 is an arbitrary point in
⋂

(p,x)∈PX S(p, x) and the LHS is known. Now
only one instrument for price is necessary. For example, the BLP instruments
can overidentify demand.

S.3 A Nonparametric Special Regressor

A different approach is to assume that the demand system of interest is gener-
ated by a random utility model with conditional indirect utilities of the form

Uijt = gj(Zijt) + Ξjt + µijt, (S.20)

where µijt is a scalar random variable whose nonparametric distribution de-
pends on Xjt and Pjt (equation (16) gives a parametric example). In this case,
our Lemma 3 demonstrates identification of each function gj(·) up to a normal-
ization of utilities. Under the assumptions of Theorems 1 and 2, conditional
demand and demand are identified as the main body of the text.

In the special case of equation (S.20), there is an alternate route to iden-
tification. Adding the assumption of independence between the vector µit

and (Ξt, Zit) then turns each gj(Zijt) into a known special regressor. Under a
further (and typically very strong) large support assumption on g(Zit), stan-
dard arguments lead to identification of the marginal distribution of (ξjt +
µijt)|(Xt, Pt) for each j in each market t. One can then use these marginal
distributions to define a cross-market nonparametric IV regression equation
for each choice j, where the LHS is a conditional mean and Ξjt appears on the
RHS as an additive structural error.7 In each of these equations the prices and
characteristics of goods k ̸= j are excluded. Identification of the regression
functions identifies all demand shocks, and identification of demand then fol-
lows as in Theorem 2. Thus, here one needs only one instrument for price, and
exogenous characteristics of competing goods (BLP IVs) would be available as
instruments.

S.4 Semiparametric Models

The previous example considered Zit with large support. One can instead
move in the opposite direction to consider Zit with more limited dimension

7See our early working paper, Berry and Haile (2010).
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and support than required in the text. We do so here by considering semi-
parametric specifications of inverse demand that generalize parametric models
commonly used in practice. We focus on the case of a one-dimensional binary
Zit, taking values 0 and 1.

Consider a semiparametric nested logit model where the inverted demand
system in each market takes the form

gj(zit)+ξjt = ln(sjt(zit)/s0t(zit))−θ ln(sj/n,t(zit))+αpjt j = 1, . . . , J. (S.21)

Here we have conditioned on Xt (treating it fully flexibly) and suppressed it
from the notation. On the RHS, sjt(zit) denotes good j’s (observable) choice
probability in market t conditional on zit, with sj/n,t(zit) denoting the within-
nest conditional choice probability. The scalar θ denotes the usual “nesting
parameter.”

The nested logit model embeds normalizations of the indices and demand
function analogous to our choices of A(x) and B(x) in section 2.5. However,
we must still normalize the location of either Ξjt or gj for each j to pose the
identification question. Here we set gj(0) = 0 for all j, breaking with our prior
convention by leaving each E[Ξjt] free.

Here (S.21) implies the two equations

gj(1) + ξjt = ln(sjt(1)/s0t(1))− θ ln(sj/n,t(1)) + αpjt (S.22)
gj(0) + ξjt = ln(sjt(0)/s0t(0))− θ ln(sj/n,t(0)) + αpjt (S.23)

for every product j and market t. Differencing these equations in one market,
we obtain

gj(1) = ln

(
sjt(1)

s0t(1)

)
− ln

(
sjt(0)

s0t(0)

)
− θ

[
ln(sj/n,t(1))− ln(sj/n,t(0))

]
(S.24)

for j = 1, . . . , J. This is J equations in J+1 unknowns: θ and g1(1), . . . , gJ(1).
Move now to a different market t′, where the observed choice probabilities

are different (perhaps because ξt ̸= ξt′). For this market, (S.24) takes the form

gj(1) = ln

(
sjt′(1)

s0t′(1)

)
− ln

(
sjt′(0)

s0t′(0)

)
− θ

[
ln(sj/n,t′(1))− ln(sj/n,t′(0))

]
(S.25)

for j = 1, . . . , J. This provides J new equations with no new unknowns. Given
minimal variation in choice probabilities across markets, ensuring that

ln(sj/n,t(1))− ln(sj/n,t(0)) ̸= ln(sj/n,t′(1))− ln(sj/n,t′(0)) (S.26)

for at least one good j, one can then solve for θ and g1(1), . . . , gJ(1). Identifica-
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tion of the remaining parameter α can then be obtained from the “regression”
equation (obtained from (S.21))

ln(sjt(zit)/s0t(zit))− gj(zit)− θ ln(sj/n,t(zit) = −αpjt − ξjt (S.27)

using a single excluded instrument for price—e.g., an excluded exogenous
market-level cost shifter or markup shifter that affects all prices. This com-
pares to the usual requirement of two instruments in the fully parametric
nested logit when one has only market-level data (see Berry (1994)). Thus,
as in the fully nonparametric case, micro data cuts the number of required
instruments by half. The intercept in this regression equation picks up the
mean of the unobservable Ξjt.

Observe that here the argument proceeds in two steps, mirroring those in
the main text. We first use a combination of within- and cross-market variation
to uncover the function g and consumer substitution patterns (determined
here by the parameter θ). We then use cross-market instrumental variables
restrictions to separate the roles of prices (and other market-level factors) from
the effects of the demand shocks.

Of course, in the first step (S.26) may typically hold for all j, implying
overidentification and suggesting the potential to introduce a more flexible
specification of the inverse demand mapping—e.g., adding nests or BLP-style
random coefficients. Furthermore, there is no reason to limit attention to just
two markets in the first step: each additional market adds new equations but
no new unknowns.8 Although this discussion is informal, it suggests the po-
tential to obtain identification of semiparametric demand models with flexible
substitution patterns, using (along with instrument(s) for prices) consumer-
level characteristics with substantially more limited dimension and support
than we required for the fully nonparametric model in the text.

S.5 Beyond Discrete Choice

Although the text emphasizes the case in which the consumer-level quantities
Qijt take the particular form implied by a discrete choice model, nothing in
our proofs requires this. In other settings, the demand function s defined in
(1) may simply be reinterpreted as the expected vector of quantities demanded
conditional on (Zit, Pt, Xt,Ξt).9 Applying our results to continuous demand is

8It is easy to see how the example here generalizes if we allow Zit to have more than two
points of support. With KZ points of support, differencing the analogs of (S.22) and (S.23)
for one market yields (KZ − 1) × J equations in 1 + (KZ − 1) × J unknowns. Each new
market adds (KZ −1)×J equations and no new unknowns in the first step of the argument.

9Note that the demand faced by firms in market t is the expectation (over the distribution
of consumer-level observables in the market) of this expected demand.
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therefore just a matter of verifying the suitability of our assumptions.10

As one possibility, consider a “mixed CES” model of continuous choice,
similar to the model in Adao, Costinot, and Donaldson (2017), with J +
1 products. Here we introduce the notation Yit for the observed income of
consumer i in market t, measured in units of the numeraire good 0. For this
example we treat Yit as an additional consumer-level observable, beyond the
J-dimensional Zit assumed to obey our index restrictions. We again focus on
the case in which Xt is exogenous.

Each consumer i in market t has utility over consumption vectors q ∈ RJ+1
+

given by

u (q; zit, pt, xt, ξt) =

(
J∑

j=0

ϕijtq
ρ
j

)1/ρ

,

where ρ ∈ (0, 1) is a parameter and each ϕijt represents idiosyncratic prefer-
ences of consumer i. Normalizing ϕi0t = 1, let

ϕijt = exp [(1− ρ) (gj (zit, xt) + ξjt + xjtβit)] , j = 1, . . . , J,

where βit is a random vector (with distribution Fβ) representing consumer-level
preferences for product characteristics. With p0t = 1, familiar CES algebra
shows that Marshallian demands are

qijt =
yit exp (gj (zit, xt) + ξjt + xjtβit − α ln(pjt))

1 +
[∑J

k=1 exp (gk (zit, xt) + ξkt + xktβit − αρ ln(pkt))
] , (S.28)

where α = 1/(1− ρ). It is easy to show that our Assumptions 1–3 are satisfied
for the expected demand functions

σt(g(zit, xt) + ξt, yit, xt, pt) = E [Qit|zit, yit, pt, xt, ξt] ,

where the jth component of E[Qit|zit, yit, xt, pt, ξt] is∫
yit exp (gj (zit, xt) + ξjt + xjtβit − α ln(pjt))

1 +
[∑J

k=1 exp (gk (zit, xt) + ξkt + xktβit − αρ ln(pkt))
] dFβ(βit).

10Berry, Gandhi, and Haile (2013) describe a broad class of continuous choice models
that can satisfy the key injectivity property of Assumption 2. These can include mixed
continuous/discrete settings, where individual consumers may purchase zero or any positive
quantity of each good.
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